An ODE for boundary layer separation on a sphere and a hyperbolic space

Chi Hin Chana,*, Magdalena Czubakb, Tsuyoshi Yonedac

a Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30010, Taiwan, ROC
b Department of Mathematical Sciences, Binghamton University (SUNY), Binghamton, NY 13902-6000, USA
c Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

\textbf{A R T I C L E I N F O}

Article history:
Received 9 February 2014
Accepted 9 May 2014
Available online 24 May 2014
Communicated by R. Temam

Keywords:
Navier–Stokes equation
Riemannian manifolds
Boundary layer separation
Coriolis effect

\textbf{A B S T R A C T}

Ma and Wang derived an equation linking the separation location and times for the boundary layer separation of incompressible fluid flows. The equation gave a necessary condition for the separation (bifurcation) point. The purpose of this paper is to generalize the equation to other geometries, and to phrase it as a simple ODE. Moreover we consider the Navier–Stokes equation with the Coriolis effect, which is related to the presence of trade winds on Earth.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the beginning of the 20th century, Prandtl proposed the boundary layer theory. Since then there has been a lot of extensive developments in the theory (see Rosenhead [1] for example). In general, the laminar flow in the boundary layer should be governed by a boundary layer equation, which is deduced from the Navier–Stokes equations. The existence of the singularity in the steady boundary layer flow along fixed wall has led to important advances in the understanding of the steady boundary layer separation. In this point of view, Van Dommelen and Shen [2] made a key observation of shock singularities with numerical computations. In the beginning of the 21st century, Ghil, Ma and Wang [3–6] have developed a rigorous theory on the boundary layer separation of the solution to the Navier–Stokes equations. Their articles are oriented towards the structural bifurcation and boundary layer separation of the solution to the Navier–Stokes equations. In particular, in [6] authors established a simple equation, which they call a “separation equation”, linking the separation location and times. Furthermore, they showed that the structural bifurcation occurs at a degenerate singular point with integer index of the velocity field at the critical bifurcation time. Their theory is based on the classification of the detailed orbit structure of the velocity field near the bifurcation time and location (see also [7]). On the other hand, Ghil, Liu, Wang and Wang [8] gave a new rigorous argument of “adverse pressure gradient” mathematically under certain conditions. The conditions were consistent with the careful numerical experiment also found in [8]. The appearance of the adverse pressure gradient is well known to be the main mechanism for the boundary-layer separation in physics.

The purpose of this paper is to obtain the separation equation of Ma and Wang’s in other geometries and to phrase it as an ODE. In order to state our main result, we need to explain Ma and Wang’s separation equation precisely. Let K be a compact domain in \mathbb{R}^2 with C^{r+1} boundary, ∂K, for $r \geq 2$. Consider the Navier–Stokes equation on K given by

\begin{align}
 u_t + \nabla u \cdot u - \Delta u + \nabla p &= 0, \\
 \text{div} \, u &= 0, \\
 u|_{\partial K} &= 0, \\
 u(x, 0) &= \phi(x), \quad \phi|_{\partial K} = 0.
\end{align}

Since we only consider the flow near the boundary, we can replace K by $\mathbb{R}^2 - K$.

We call a point $p \in \partial K$ “∂-regular point of u” if the normal derivative of the tangential component of u at p is nonzero, i.e., $\partial(u \cdot \tau)(p)/\partial n \neq 0$, otherwise, $p \in \partial K$ is called a $\check{\partial}$-singular point (bifurcation point) of u.

\textbf{Theorem 1.1} ([6]). Let K be a compact domain in \mathbb{R}^2 with C^{r+1} boundary, ∂K, for $r \geq 2$. Let $p_0 \in \partial K$, and $t_0 \geq 0$. If (p_0, t_0) is a
$\partial\phi(p_0)/\partial n = \int_0^1 \nabla \Delta u - k\Delta u \cdot \tau \, dt,$
where $\nabla \Delta u = \partial_i (\Delta \cdot n) - \partial_n (\Delta \cdot \tau)$, and $k(p_0)$ is the curvature of ∂K at p_0.

Eq. (1.2) is called the "separation equation".

We now give an example which tells us imposing inflow profile is useful. A wind turbine system consisting of a diffuser shroud with a broad-ringed at the exit periphery and a wind turbine inside it was developed by Ohya and Karasudani [9]. Their experiments show that a diffuser-shaped (not nozzle-shaped) structure can accelerate the wind at the entrance of the body. This is called "wind-lens phenomena". A strong vortex formation with a low-pressure region is created behind the broad brim. The wind flows into a low-pressure region, and the wind velocity is increased more near the entrance of the diffuser. In general, creation of a vortex needs separation phenomena near a boundary (namely, bifurcation phenomena), and before separating from the boundary, the flow moves towards the reverse direction near the boundary against the laminar flow (inflow) direction. In order to consider such phenomena in pure mathematics, imposing inflow profile at the entrance should be reasonable.

We moreover consider the situation on a sphere and a hyperbolic space (we can easily deduce the ODE in the Euclidean case). In the case of the sphere, one motivation comes from studying the flow on the Earth (see Corollary 1.4).

Now, we write the equation on a Riemannian manifold, M, where M is taken either to be a sphere $S^2(\alpha^2)$ or a hyperbolic space $M = \mathbb{H}^2(-\alpha^2)$. We write the equation in the language of differential 1-forms as follows.

Let O be the base point in M. Let (r, θ) be the normal polar coordinates on M. Then we have the following orthonormal moving frame

$$e_1 = \partial_r, \quad e_2 = \frac{1}{s_2(r)} \partial_\theta$$

where $s_2(r) = \frac{\sinh(\alpha r)}{\alpha}$ if $M = S^2(\alpha^2)$ or $s_2(r) = \frac{\sinh(\alpha)}{\alpha}$ if $M = \mathbb{H}^2(-\alpha^2)$. We also introduce $c_2(r)$, where $c_2(r) = \cos(\alpha r)$ if $M = S^2(\alpha^2)$ or $c_2(r) = \cosh(\alpha r)$ if $M = \mathbb{H}^2(-\alpha^2)$. Note

$$\frac{d}{dr} s_2(r) = c_2(r).$$

For simplicity, in the sequel, we omit the writing of subscripts a in s_a and c_a and simply write s, c. The associated dual frame to $\{e_1, e_2\}$ can be written as

$$e^1 = dr, \quad e^2 = s \, d\theta.$$

Hence the volume form on M is given by $\text{Vol}_M = e^1 \wedge e^2 = s \, d\theta \wedge d\theta$. Let ∇ be the Levi-Civita connection on M. We have

$$\nabla_\theta \partial_r = 0, \quad \nabla_\partial \partial_\theta = c_2 \partial_\theta, \quad \nabla_\partial \partial_\theta = -c_2 \partial_\theta.$$

These imply

$$\nabla_1 e_1 = \nabla_1 e_2 = 0, \quad \nabla_2 e_2 = -\frac{c_2}{s} e_1, \quad \nabla_2 e_1 = \frac{c_2}{s} e_2.$$

Let d be the distance function on M. Define an obstacle K on M by $K = \{ p : d(p, O) < \delta \}$. Consider a smooth vector field u defined on a neighborhood near ∂K. Then u can be written as $u = u_1 e_1 + u_2 e_2$.

for some locally defined smooth functions u_1, u_2. By “lowering the index” we can obtain a 1-form $u^* = u_1 e^1 + u_2 e^2$. For simplicity we just write u for both the vector field and the 1-form. Recall the Hodge star operator, \ast, is a linear operator that sends k-forms to $(n-k)$-forms and is defined by

$$\alpha \wedge \ast \beta = g(\alpha, \beta) \text{Vol}_M.$$

Then

$$\ast \delta \alpha = (-1)^{n+k+1} \ast d \ast \alpha,$$

where n is the dimension of the manifold, and κ the degree of α.

Here, by a direct computation

$$\ast e^1 = e^2, \quad \ast e^2 = -e^1, \quad \ast \text{Vol}_M = 1.$$

Recall

$$d^* \alpha = (-1)^{nk+n+1} \ast d \ast \alpha.$$

So for two dimensional manifolds we have $d^* = - \ast d \ast$. Then the Navier–Stokes equation on $M - K$ is given by

$$u_t + \nabla_u u - \Delta u - 2Ric u + dp = 0,$$

$$d^* u = 0, \quad u|_{\partial K} = 0, \quad u(x, 0) = u_0(x), \quad u|_{\partial K} = 0.$$

For fixed $p_0 \in \partial K$, and u a solution of (1.15), let us give the key parameters

$$k = k_{a, \delta} := \frac{c_2(\delta)}{s_2(\delta)}, \quad \alpha_1(t) := \partial_t u_0(t, p_0), \quad \alpha_2(t) := \partial^2_t u_0(t, p_0), \quad \alpha_3(t) := \partial^3_t u_0(t, p_0), \quad \eta(t) := \frac{1}{s^2(\delta)} \partial_t \partial^2_t u_0(t, p_0).$$

Note that k includes both curvature of the manifold and curvature of the boundary. Our main theorem is the following:

Theorem 1.2. Let $\alpha_1(0) > 0$ (initial data), and $\alpha_2(t)$, $\alpha_3(t)$ and $\eta(t)$ be given functions. Then $\alpha_1(t)$ satisfies the following ODE:

$$\partial_t \alpha_1(t) = -k^2 \alpha_1(t) + \alpha_2(t) + 2k \alpha_3(t) + 2\eta(t).$$

Remark 1.3. We give five remarks.

- A ∂-singular point (bifurcation point) occurs at t_0 iff a function $\alpha_1(t)$ satisfies $\alpha_1(t) = 0$.
- The above result is a generalization of [10] which is considered in the Euclidean space \mathbb{R}^2.
- We can regard $\alpha_1(t)$, $\alpha_2(t)$ and $\alpha_3(t)$ as a part of the inflow profile. However $\eta(t)$ is not. Let us be more precise. Choose $\tilde{p} \in \partial K$ close to $p_0 \in \partial K$, and let $\tilde{K} := \{ p \in M - K : d(p, \tilde{p}) < d(p_0, \tilde{p}) \}$.

Then $\alpha_1(t)$, $\alpha_2(t)$ and $\alpha_3(t)$ can be determined by $u(t, \cdot)$ on $\partial K \cap \tilde{K}$ near $p_0 \in \partial K$ (boundary value). $\eta(t)$ can be determined by $u(t, \cdot)$ in $\tilde{K} \cap K$ near $p_0 \in \partial K$ (interior flow).

- We can find a geometric meaning of $\eta(t)$ (see also [10]).
 - Convexing streamlines: We can see (geometrically) convexing streamlines near the boundary iff $\eta(t) < 0$.
 - Almost parallel streamlines: We can see (geometrically) almost parallel streamlines near the boundary iff $\eta(t) = 0$.
 - Concaving streamlines: We can see (geometrically) concaving streamlines near the boundary iff $\eta(t) > 0$.

It is reasonable to assume u_0 does not grow polynomially for the r direction (this is due to the observation of the "boundary layer", since the flow should be a uniform one away from the boundary). Thus, it should be focused to focus on the following two cases:

- Poiseuille type profile: $- k_1 \alpha_1(t) + 2 k_2 \alpha_2(t) < 0$ for $\alpha_1(t) > 0$, $\alpha_2(t) < 0$ and $\alpha_1(t)$ is small comparing with $\alpha_2(t)$ and $\alpha_2(t)$.

- Before separation profile: $2 k_2 \alpha_2(t) < 0$ for $\alpha_2(t) > 0$, $\alpha_3(t) < 0$ and $\alpha_3(t)$ is small comparing with $\alpha_2(t)$ and $\alpha_2(t)$.

In this point of view, the well-known physical phenomena of "adverse pressure gradient" occurs in "before separation profile", since $\alpha_2(t) > 0$ and $dp = \Delta u$ on the boundary.

Our method can be applied to geophysics, in particular, to the "trade winds" on Earth. The trade winds are the easterly surface winds that can be found in the tropics, within the lower portion of the Earth’s atmosphere near the equator. The Coriolis effect is responsible for deflecting the surface air, which flows from subtropical high-pressure belts towards the Equator, towards the west in both hemispheres. In the corollary below, we consider the Navier–Stokes equation with the Coriolis effect on a rotating sphere. The equation is

\begin{equation}
\begin{aligned}
u_t + \nabla u - \Delta u - 2 \text{Ric} u + \beta \cos(\alpha) \ast u + dp = 0, \\
d^+ u = 0, \\
u(x, 0) = u_0,
\end{aligned}
\end{equation}

where $\beta \in \mathbb{R}$ is a Coriolis parameter. The term $\beta \cos(\alpha) \ast u$ represents the effect upon the velocity u due to the rotation of the sphere with constant speed β. It is worthwhile to mention that the existence and uniqueness of parallel laminar flows satisfying the stationary version of the above system has been considered in [11]. More details on the Coriolis effect on a sphere can be found in [12], and in the vorticity formulation, for example, in [13].

Corollary 1.4. Let u satisfy (1.16)–(1.18) and the following conditions

\[u_{0}|_{\partial \mathcal{K}} = 0, \quad u_{r}|_{\partial \mathcal{K}} = \lambda_0 \in \mathbb{R}, \quad \partial_{\mathcal{K}} u_{r}|_{\partial \mathcal{K}} = 0. \]

Then $\alpha_1(t)$ satisfies $\partial_\mathcal{K} \alpha_1(t) = - \frac{k}{s} \alpha_2(t) + \alpha_3(t) + 2 \eta(t) + \lambda_0 \beta (\sin(\alpha_0) - k \cos(\alpha_0))$.

This is proved in Section 3.

Remark 1.5. If $\lambda_0 (\sin(\alpha_0) - k \cos(\alpha_0))$ is strictly positive, and β is sufficiently large compared with $\alpha_1(0) > 0$, λ_0, k, $\alpha_2(t)$, $\alpha_3(t)$ and $\eta(t)$, then $\eta(t)$ can never be zero. This expresses that the south (or north) flow deflects towards the east (or west). Moreover we can find an asymptotic behavior of $\alpha_1(t)$:

\[\lim_{t \to -\infty} \alpha_1(t) = - \frac{(2k - \lambda_0) \alpha_2 + \alpha_3 + 2 \eta + \lambda_0 \beta (\sin(\alpha_0) - k \cos(\alpha_0))}{k(2 - \lambda_0)} = 0, \]

if $\alpha_2(t) \to \tilde{\alpha}_2$, $\alpha_3(t) \to \tilde{\alpha}_3$ and $\eta(t) \to \tilde{\eta}$.

2. Proof of the main theorem

We first prepare the necessary computations and then put them together in Section 2.6.

2.1. Divergence free condition in coordinates

If u is divergence free, then $d^+ u = 0$. Compute

\[0 = d^+ u = - \ast d \ast u = - \ast d \ast u = - \ast (d(u, e^1) - u_0 e^1) = - \ast (\partial_\mathcal{K} (su_0) + \partial_\mathcal{K} u_0) \text{dr} \wedge d\theta = - \frac{1}{s} (\partial_\mathcal{K} (su_0) + \partial_\mathcal{K} u_0). \]

This implies $\partial_\mathcal{K} (su_0) + \partial_\mathcal{K} u_0 = 0$. \hspace{1cm} (2.1)

In addition on $\partial \mathcal{K}$, thanks to the no-slip boundary condition, from (2.1) we can deduce

\[0 = \partial_\mathcal{K} u_0|_{\partial \mathcal{K}} = \{ - c u_r - s \partial_\mathcal{K} u_r \}|_{\partial \mathcal{K}} = - s \partial_\mathcal{K} u_r |_{\partial \mathcal{K}}. \hspace{1cm} (2.2) \]

2.2. Computing normal and tangential components of Δu

The goal is to compute $g(\Delta u, e^1)$ and $g(\Delta u, e^2)$. First, $- \Delta u = dd^+ u + d^+ d u = d^+ d u$.

Next $d u = \{ \partial_\mathcal{K} (su_0) - \partial_\mathcal{K} u_0 \} \text{dr} \wedge d\theta = \frac{1}{s} \{ \partial_\mathcal{K} (su_0) - \partial_\mathcal{K} u_0 \} \text{Vol}_M$. It follows

\[\Delta u = - d^+ d u = \ast d \ast d u = \ast d^+ d u \]

\[= \ast d \ast \frac{1}{s} \{ \partial_\mathcal{K} (su_0) - \partial_\mathcal{K} u_0 \} \text{Vol}_M \]

\[= \ast d \ast \left(\partial_\mathcal{K} \left(\frac{1}{s} \partial_\mathcal{K} (su_0) \right) - \partial_\mathcal{K} \left(\frac{1}{s} \partial_\mathcal{K} u_0 \right) \right) e^1 + \frac{1}{s} * \{ \partial_\mathcal{K} \partial_\mathcal{K} (su_0) - \partial_\mathcal{K} u_0 \} d\theta \]

\[= \partial_\mathcal{K} \left(\frac{1}{s} \{ \partial_\mathcal{K} (su_0) - \partial_\mathcal{K} u_0 \} \right) e^2 - \frac{1}{s} \{ \partial_\mathcal{K} (s \partial_\mathcal{K} u_0) - s \partial_\mathcal{K} u_0 \} e^1. \]

Then

\[g(\Delta u, e^1) = \frac{1}{s^2} \{ \partial_\mathcal{K}^2 u_0 - \partial_\mathcal{K} (s \partial_\mathcal{K} u_0) \} \]

\[= \frac{1}{s^2} \{ \partial_\mathcal{K}^2 u_0 - c \partial_\mathcal{K} u_0 - s \partial_\mathcal{K} u_0 \}, \hspace{1cm} (2.3) \]

which can be rewritten using (2.1) as follows

\[g(\Delta u, e^2) = \frac{1}{s^2} \{ \partial_\mathcal{K}^2 u_0 - c \partial_\mathcal{K} u_0 + s \partial_\mathcal{K} (su_0) \} \]

\[= \frac{1}{s^2} \partial_\mathcal{K}^2 u_0 - \frac{c^2}{s^2} \partial_\mathcal{K} u_0 + c \partial_\mathcal{K} u_0 + 2 \frac{c}{s} \partial_\mathcal{K} u_0 + c^2 \partial_\mathcal{K} u_0, \hspace{1cm} (2.4) \]

where s depends on the choice of M. Here, in the sequel, the upper sign refers to the sphere and the lower sign to the hyperbolic plane.

Next $g(\Delta u, e^2) = \partial_\mathcal{K} \left(\frac{1}{s} \{ \partial_\mathcal{K} (su_0) - \partial_\mathcal{K} u_0 \} \right) = \partial_\mathcal{K} \left(\frac{1}{s} u_0 + \partial_\mathcal{K} u_0 - \frac{1}{s} \partial_\mathcal{K} u_0 \right) = - \frac{1}{s} \partial_\mathcal{K} u_0 + \frac{1}{s} \partial_\mathcal{K} u_0 + \partial_\mathcal{K} u_0 + \frac{c}{s^2} \partial_\mathcal{K} u_0 - \frac{1}{s} \partial_\mathcal{K} u_0 \hspace{1cm} (2.5)$

since $\partial_\mathcal{K} (c/s) = -(1/s^2)$ and $\partial_\mathcal{K} (1/s) = -(c/s^2)$.

2.3. Computing $\frac{1}{s} \partial_\mathcal{K} g(\Delta u, e^1)$ on $\partial \mathcal{K}$

First observe that on $\partial \mathcal{K}$, from the no-slip boundary condition, \textit{(2.2)} and \textit{(2.4)} we have

\[\text{Vol}_M = \frac{1}{s} \partial_\mathcal{K} \partial_\mathcal{K} u_0|_{\partial \mathcal{K}}. \]

Hence

\[\frac{1}{s} \partial_\mathcal{K} g(\Delta u, e^1)|_{\partial \mathcal{K}} = \frac{1}{s} \partial_\mathcal{K} \partial_\mathcal{K} u_0|_{\partial \mathcal{K}}. \hspace{1cm} (2.6) \]

We need this formula to estimate the pressure term on the boundary.
2.4. Computing $\partial_t g(\nabla u, e_2)$ on ∂K

First, by the properties of the connection and (1.11)

$$\nabla_u u = \nabla_{u_1} u + \nabla_{e_2} u_1 + u_0 e_2 = u \nabla_{u_1} (u \nabla_{e_2} u_1 + u_0 \nabla_{e_2} u) = u_0 (\partial_t u_1 e_1 + \partial_t u_0 e_2 + \frac{1}{s} \partial_t u_0 e_1 + u \frac{c}{s} e_2) + \frac{1}{s} \partial_t u_0 e_2 \bigg|_{\partial K}.$$

(2.7)

Then

$$g(\nabla_u u, e_2) = u_0 \partial_t u_0 + u_0 \frac{c}{s} + \frac{1}{s} u_0 \partial_0 u_0.$$

(2.8)

Differentiating and evaluating at the boundary and using the non-slip boundary condition, we reduce (2.8) to

$$\partial_t g(\nabla_u u, e_2) |_{\partial K} = \partial_t u_0 \partial_t u_0 + u \frac{c}{s} \partial_t u_0 \partial_0 u_0.$$

But then the divergence free condition (2.1) again with the non-slip boundary condition imply

$$\partial_t g(\nabla_u u, e_2) |_{\partial K} = \bigg\{ \frac{1}{s} \partial_t u_0 \partial_t u_0 - \frac{1}{s} \partial_t u_0 \partial_t (su) \bigg\} |_{\partial K} = 0.$$

(2.9)

2.5. Computing $\partial_t g(\nabla p, e_2)$ on ∂K

First

$$dp = \partial_t dp + \partial_0 dp \partial \theta = \partial_p e^1 + \frac{1}{s} \partial_0 p e^2.$$

Hence

$$\nabla p = \partial_t e_1 + \frac{1}{s} \partial_0 p e_2.$$

and

$$\partial_t g(\nabla p, e_2) = \partial_t \bigg(\frac{1}{s} \partial_t p \bigg) = -\frac{c}{s^2} \partial_t p + \frac{1}{s} \partial_0 p$$

$$= -\frac{c}{s^2} g(\nabla p, e_2) + \frac{1}{s} \partial_0 p.$$

(2.10)

Equivalently, we can write (2.10) as

$$\partial_t g(\nabla p, e_2) = -\frac{c}{s^2} g(\nabla p, e_2) + \frac{1}{s} \partial_0 g(\nabla p, e_1).$$

(2.11)

2.6. Proof of the formula

We now follow the proof in [6], but without assuming that p_0 is a bifurcation point.

Let $p_0 \in \partial K$, and $t_0 > 0$. Begin by writing

$$\partial_t |_{p_0} g(u(t_0, \cdot), e_2) - \partial_t |_{p_0} g(u(t_0, \cdot), e_2)$$

$$= \int_0^{t_0} \frac{d}{dt} \bigg|_{\partial K} \partial_t |_{p_0} g(u(t, \cdot), e_2) \bigg| dt.$$

(2.12)

From (1.15) it follows

$$\frac{d}{dt} \bigg|_{\partial K} \partial_t g(u(t, \cdot), e^2) = \partial_t g(\Delta u(t, \cdot), e^2) + \partial_t g(2 \text{Ric}(u(t, \cdot), e^2)$$

$$- \partial_t g(\nabla u(t, \cdot), e^2) - \partial_t g(dp(t, \cdot), e^2).$$

We can simplify by using Ric(u) = $a^2 u$ if $M = S^2(a^2)$ and Ric(u) = $-a^2 u$ if $M = \mathbb{H}^2(-a^2)$, and write Ric(u) = $\pm a^2 u$. Also on the boundary we can use (2.9) to write

$$\frac{d}{dt} \bigg|_{\partial K} \partial_t g(u(t, \cdot), e_2) = \partial_t g(\Delta u(t, \cdot), e_2) + \partial_t g(\nabla u(t, \cdot), e_2)$$

$$- \partial_t g(dp(t, \cdot), e_2).$$

Next from (2.11) we have

$$\frac{d}{dt} \bigg|_{\partial K} \partial_t g(u(t, \cdot), e_2) = \partial_t g(\Delta u(t, \cdot), e^2) + \partial_t g(dp(t, \cdot), e_2).$$

Since on ∂K

$$dp = \Delta u,$$

going back to (2.12) we obtain (compare this with (1.12))

$$\partial_t |_{p_0} g(u(t_0, \cdot), e_2) - \partial_t |_{p_0} g(u(t_0, \cdot), e_2)$$

$$= \int_0^{t_0} \partial_t g(\Delta u(t, p_0), e^2) + \partial_t g(dp(t, p_0), e_2)\bigg|_{t_0} dt$$

$$= \int_0^{t_0} \partial_t g(\Delta u(t, p_0), e^2) + \partial_t g(dp(t, p_0), e_2)\bigg|_{t_0} dt$$

$$= \int_0^{t_0} \partial_t g(\Delta u(t, p_0), e^2) + \partial_t g(dp(t, p_0), e_2)\bigg|_{t_0} dt$$

(2.13)

To obtain the necessary and sufficient condition, we write (2.14) more explicitly as follows. From (2.5)

$$\partial_t g(\Delta u(t, p_0), e^2)$$

$$= \bigg\{ \partial_t \bigg(-\frac{1}{s^2} \partial_0 u_0 + \frac{c}{s} \partial_0 u_0 + \frac{c}{s^2} \partial_0 u_0 \bigg) \bigg\} |_{(t, p_0)}$$

And again from (2.5)

$$\frac{c}{s^2} g(\Delta u(t, p_0), e^2) = \bigg\{ \frac{c}{s^2} \partial_0 u_0 + \frac{c}{s^2} \partial_2 u_0 \bigg\} |_{(t, p_0)}.$$

(2.15)

(2.16)

Then (2.14)–(2.16) and (2.6) give

$$\partial_t |_{p_0} g(u_0, e_2) - \partial_t |_{p_0} g(u(t_0, \cdot), e_2)$$

$$= \int_0^{t_0} \partial_0 \bigg(\frac{c}{s^2} \partial_0 u_0 - \frac{c}{s^2} \partial_2 u_0 - \frac{c}{s^2} \partial_2 u_0 + 2 \partial_2 \partial_0 u_0 \bigg) dt$$

$$= \int_0^{t_0} \partial_0 \bigg(\frac{c}{s^2} \partial_0 u_0 - \frac{c}{s^2} \partial_2 u_0 - \frac{c}{s^2} \partial_2 u_0 + 2 \partial_2 \partial_0 u_0 \bigg) dt$$

$$= \int_0^{t_0} \partial_0 \bigg(\frac{c}{s^2} \partial_0 u_0 - \frac{c}{s^2} \partial_2 u_0 - \frac{c}{s^2} \partial_2 u_0 + 2 \partial_2 \partial_0 u_0 \bigg) dt.$$

Finally, by using (2.1) again, we can rewrite the last term as

$$\int_0^{t_0} \frac{d}{dt} \bigg|_{\partial K} \partial_t |_{p_0} g(u(t, \cdot), e_2)$$

$$= \frac{2}{s^2} \partial_0 \partial_0 u_0 - \frac{c}{s^2} \partial_0 u_0 - \frac{c}{s^2} \partial_2 u_0 + \frac{2}{s^2} \partial_2 \partial_0 u_0.$$

(2.17)
or equivalently
\[\alpha_1(0) - \alpha_1(t_0) = \int_0^{t_0} k^2 \alpha_1(t) - \alpha_3(t) - 2k\alpha_2(t) - 2\eta(t) \, dt, \]
which gives the desired ODE.

3. With Coriolis force and the in-flow condition case

Recall here we have
\[u_0|_{\partial K} = 0, \quad u_r|_{\partial K} = \lambda_0 \in \mathbb{R}, \quad \partial_r u_r|_{\partial K} = 0 \]
and we work with (1.16)--(1.18). Then note that
\[g(\beta \cos(\alpha) \ast u, e_2) = \beta \cos(\alpha) g(u, e_2) = \beta \cos(\alpha) u_r \]
and
\[\partial_r \mid_{p_0} g(\beta \cos(\alpha) \ast u, e_2) = -\alpha \beta \lambda_0 \sin(\alpha \delta). \]

Next, recall (2.8)
\[g(\nabla u, e_2) = u_i \partial_i u_0 + u_0 u_0 \frac{c}{s} + \frac{1}{s} u_0 \partial_0 u_0. \]

Then differentiate, evaluate on the boundary, and this time use (3.1) to obtain
\[\partial_r g(\nabla u, e_2)|_{\partial K} = \lambda_0 \partial_r^2 u_0 + \lambda_0 \partial_r u_0 \frac{c}{s} + \frac{1}{s} u_0 \partial_0 u_0. \]

From the divergence free condition and (3.1) we have
\[\partial_r g(\nabla u, e_2)|_{\partial K} = \left\{ \lambda_0 \partial_r^2 u_0 + \lambda_0 \partial_r u_0 \frac{c}{s} - \frac{1}{s} \partial_0 u_0 \partial_r (s u_r) \right\}|_{\partial K} = \lambda_0 \partial_r^2 u_0|_{\partial K}. \]
(3.3)

Another place where we obtain an extra term is in (2.13), where due to (2.7), (3.1) and the Coriolis term in (1.16), now we have
\[dp = \Delta u - \lambda_0 \partial_0 u_0 + 2\alpha^2 \lambda_0 \alpha_1 - \beta \cos(\alpha \delta) \lambda_0 e_2 \]
on \partial K. With the Coriolis term (3.2), then (2.14) becomes
\[\partial_r \mid_{p_0} g(u_0, e_2) - \partial_r \mid_{p_0} g(u(t_0, \cdot), e_2) = -\int_0^{t_0} \left\{ \partial_r g(\nabla u(t, p_0), e^2) - \frac{1}{s} \partial_0 g(\nabla u(t, p_0), e^1) \right\} \, dt + \frac{c}{s} g(\Delta u(t, p_0) - \lambda_0 (\partial_r u_0 + \beta \cos(\alpha \delta))^2, e^2)
\]
\[+ 2\alpha^2 \partial_0 u_0 - \lambda_0 \partial_0^2 u_0 + \alpha \beta \lambda_0 (\sin(\alpha \delta)) \right\} \, dt. \]
(3.4)

We then repeat the same computations that followed (2.14). The results are the same except that we have the four extra terms that appeared in (3.4). This turns (2.17) into
\[\partial_r \mid_{p_0} g(u_0, e_2) - \partial_r \mid_{p_0} g(u(t_0, \cdot), e_2) = \int_0^{t_0} k^2 \alpha_1(t) - \alpha_3(t) - 2k\alpha_2(t) - 2\eta(t)
\]
\[+ \lambda_0 (k\alpha_1(t) + \alpha_2(t)) - \lambda_0 \beta (\sin(\alpha \delta) - k \cos(\alpha \delta)) \, dt. \]

Acknowledgments

The authors would like to thank the referee for their helpful comments. The first author is partially supported by a grant from the National Science Council of Taiwan (NSC 101-2115-M-009-016-MY2). The second author is partially supported by a grant from the Simons Foundation #246255. The third author is partially supported by JSPS KAKENHI Grant Number 25870004. The authors also would like to thank their three institutions for the hospitality during the visits when this work was carried out. Also, this paper was developed during a stay of the third author as an assistant professor of the Department of Mathematics at Hokkaido University.

References