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Simultaneous Nulling for Monopulse Array with 
Partially Adaptive Weights 

Ta-Sung Lee, Member, IEEE 

Abstract-A new simple method is described for synthesizing 
low-sidelobe sum and difference patterns with partially adaptive 
weights. By partially adaptive, we mean that only part of the 
weights are adapted for simultaneous nulling. These adaptive 
weights are shared by the sum and difference channels, leading 
to a significant reduction in the number of variable attenu- 
atodphase shifters used, as compared to the fully adaptive 
implementation. An objective function is derived that yields dif- 
ferent configurations of the shared adaptive weights. Numerical 
examples are presented to ascertain the efficacy of the new 
method for both point and extended interference. 

I. INTRODUCTION 
IMULTANEOUS nulling is essential for a monopulse S radar operated in an environment contaminated with 

strong interference. With the advent of modern phased array 
technology, simultaneous nulling can be accomplished via 
the adaptation of two independent sets of complex weights, 
one for the sum channel and the other for the difference 
channel [l], [2]. In spite of its flexibility, adaptive nulling 
with full amplitude and phase control for both channels is 
rather expensive, considering the cost of phase shifters and 
variable attenuators. As a remedy, the ideas of phase-only 
control [3], [4] and amplitude-only control [5 ]  were proposed; 
they allow one to synthesize the desired sum and difference 
patterns using fixed amplitude weights or real weights. The 
drawback of phase-only implementation is that the numerical 
complexity involved in solving for the phase adjustments is 
high, except for the case of small perturbation in which the 
problem can be linearized. Amplitude-only implementation is 
simple, but it usually results in undesired pattern shapes. In 
another approach to simplifying the hardware, the sum and 
difference channels share the same set of complex weights, 
with the sign reversed for half the weights for the difference 
channel [5].  Its drawback is that the difference pattern exhibits 
undesired high sidelobes due to the discontinuity of the taper at 
the center of the aperture. A different approach was suggested 
[l] based on the use of shared weight perturbations, i.e., the 
same set of amplitude and phase perturbations are imposed 
on the preselected quiescent sum and difference weights. 
Although the use of shared weight perturbations achieves 
good performance, it increases the hardware complexity as 
compared to the shared weight implementation. Subarray 
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beamforming was also proposed [6] as an economical means 
of adaptive nulling. In this approach, adaptive weights are 
placed at the subarray outputs, resulting in fewer variable 
attenuators. Unfortunately, grating lobe problems limit this 
form of implementation. 

We here present a new simple method for simultaneous 
nulling with low-sidelobe sum and difference patterns using 
a uniform, linear array (ULA). The method is prompted by 
the fact that the Chebyshev and Bayliss tapers are similar in 
shape near both ends of the aperture. It is thus reasonable to 
use a common set of complex weights for both channels at the 
tail portions. To reduce hardware complexity, the amplitude 
weights at the center portions of the aperture are fixed for both 
channels, and are copied from the desired sum (Chebyshev) 
and difference (Bayliss) tapers. Fixing the center amplitude 
weights in this fashion offers the advantage of preserving 
the shapes of the desired patterns under adaptive nulling 
operations. Owing to the reduction of free complex weights, 
the maximum number of individual point interferers that can 
be nulled exactly is decreased. To remedy this, phase-only 
adaptation is incorporated on the unshared center weights for 
both channels. Introducing phase-only adaptation provides an 
extra degree of freedom for improving the sidelobe behaviors 
of the synthesized patterns. To avoid high numerical complex- 
ity, we manage to keep the phase perturbations small so that 
first-order approximation can be used. An objective function is 
set up for obtaining the optimum weight vectors that produce 
the sum and difference patterns best approximating the desired 
ones in the sense of minimum L2 distance. By choosing 
proper weighting factors in the objective function, various 
configurations of the shared adaptive weights are obtained. 
Numerical examples confirm that the proposed method can in- 
deed perform simultaneous nulling, while keeping the sidelobe 
level low enough as is desired. 

11. NOTATIONS AND MODEL FORMULATION 
Some of the notations used in the paper are defined as 

z* :  complex conjugate of z. 
M~ (UT): transpose of matrix M (vector U). 
M~ ( u H ) :  conjugate transpose of matrix M (vector U). 
I,: n x n identity matrix. 
I,: n x n reverse permutation matrix with ones on the 
antidiagonal and zeros elsewhere. It reverses the columns 
of the matrix premultiplied by it. 
Omxn: m x n zero matrix. 

follows: 
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0,: n x 1 zero vector. 
Diag{u}: diagonal matrix with its diagonal components 
given by vector U .  

Consider a linear array consisting of M identical elements 
uniformly spaced by a half wavelength. The far field pattern 
of the array associated with a set of complex weights wi,  
z = 1,. . . , M ,  can be expressed as 

W(.) = W H U ( U )  (1) 

where 

is the M x 1 weight vector, and 

a(.) = 

(3 )  

is the M x 1 array response vector accounting for the phase 
variation across the array. The variable U = sin(0) is the sine- 
space angle, with B representing the physical angle with respect 
to the broadside of the array. For the case of half-wavelength 
spacing, U and B are uniquely related over -1 5 U 5 1, 
or -90" 5 B 5 90". Note that we have set the reference 
point of the array to be at its geclmetric center such that 
U(.) is conjugate symmetric, i.e., I M U ( U )  = a*(u). As a 
consequence, if the weight vector is also conjugate symmetric, 
then the pattern will be purely real, which is a desired property 
in monopulse operation. In the following development, we will 
assume that all the weight vectors referred to are conjugate 
symmetric. 

A criterion for choosing the sum and difference weights in 
monopulse arrays is the capability of suppressing interference 
from outside the mainlobe region. To ensure the protection 
from interference in all directions, patterns with uniformly 
low sidelobes are desired. Also, to enhance the accuracy of 
target bearing estimation, a narrow mainlobe for the sum 
pattern and a large boresight slope for the difference pattem 
are desired. The Chebyshev taper [7] and the Bayliss taper 
[8] are the appropriate candidates for the sum and differ- 
ence channels, respectively, considering the aforementioned 
mainlobe and sidelobe behaviors. In this paper, an efficient 
and cheap implementation of the adaptive sum and difference 
beamformers is proposed that retains the desired properties of 
the Chebyshev and Bayliss beamformers under simultaneous 
nulling operations. 

111. PARTIAL SHARED WEIGHTS IMPLEMENTATION 
A simple way to implement the sum and difference beam- 

formers is to determine the weights for the sum channel first, 
and then reverse the sign of half the weights for the difference 
channel. The simplification in system complexity is that only 
a single set of complex weights is needed. However, working 
with full shared weights usually results in poor sidelobe 
behaviors due to the discontinuity of the difference taper. As 
a remedy, we propose the use of partial shared weights. 
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Fig. 1 .  
sidekobes. Solid line: Chebyshev; dashed line: Baykiss. 

Normalized 24-point Chebyshev and Bayliss tapers with -35 dB 

For the sake of convenience, we will assume that M is even 
and the boresight angle is zero. For a nonzero boresight angle, 
the results are easily modified with an appropriate progressive 
phase shifting. To demonstrate how the shared weights should 
be chosen, we consider the shapes of the Chebyshev and 
Bayliss tapers, as shown in Fig. 1. The Chebyshev taper 
resembles a half cycle cosine wave, whereas the Bayliss 
taper resembles a full cycle sine wave. The two tapers are 
quite different at the center, but are similar in shape at the 
tails. This prompts us to implement the sum and difference 
beamformers sharing the same J < weights from both 
ends of the aperture. Incorporation of this constraint and 
imposing conjugate symmetry leads to the following segmental 
structures for the sum and difference weight vectors: 

r r i  

(4) 

where r is the J x 1 complex vector representing half the 
shared tail weights. c, and Cd are the N x 1 ( N  = v) 
complex vectors representing half the unshared center weights 
associated with the sum and difference channels, respectively. 
Observing Fig. 1 again indicates that the appropriate config- 
uration should be J % $. Similarly, we can express the 
Chebyshev and Bayliss weight vectors in accordance with (4): 

r j r d o  1 
( 5 )  

where we note that the subvectors rs0, cso, r d o  and Cdo are 
all real. 



930 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 42, NO. 7, JULY 1994 

To simplify the hardware complexity, the amplitudes of the 
center weights c, and cd are fixed and copied directly from 
c,, and C d o ,  respectively. This should help to retain the desired 
low sidelobe behavior for s and d. However, employing fixed 
center amplitude weights reduces the degree of freedom in 
nulling point interferers. To remedy this, phase-only adaptation 
is incorporated on the center weights. Introducing phase-only 
adaptation not only provides an extra degree of freedom for 
nulling but also improves the sidelobe behaviors of the synthe- 
sized patterns. The drawback of phase-only implementation is 
the high numerical complexity incurred with the nonlinearity 
of the problem. In some cases, it is assumed that the phase 
perturbations are small such that the exponentials can be 
linearized [3], [4]. The small perturbation assumption holds 
typically when the number of adaptive nulls is small relative 
to the number of independent weights, and when the perturbed 
patterns are close ,to the original ones. A scheme will be 
presented shortly that ensures that the phase perturbations are 
small enough. 

In the proposed method, the same set of phase perturbations 
are imposed on the center weights. Since the tail weights are 
already shared, this would require only a single set of variable 
phase shifters for both channels. Let $k, k = 1 , . . . , 2 N ,  
be these phase perturbations. Under the small perturbation 
assumption, we have ej$k M l+j$k,  k = 1 , .  . . , 2 N ,  such that 

c, M cso + j c s o 4 ,  

sum and difference patterns are then synthesized accordingly 
to put "hard nulls" in these directions. 

Let ui, i = l , . . .  , K ,  be the K estimated interfering 
directions. The execution of interference cancellation requires 

where s ( u )  = sHa(u) and d(u )  = dHa(u) are the sum and 
difference patterns, respectively. Rewriting (9) in matrix form 
yields 

where 

is the M x K interference response matrix partitioned in 
accordance with (4). Substituting (8) and (11) into (10) and 
using I ,  = I J  and IN = I N  leads to the following systems 
of equations: 

- 2  - 2  

(6) j ( A F r  - ATr*) - (AH + AF)Cdo4 = - j ( @  - AT)Cdo. cd cdo + jcdo4 

where C,, = Diag{c,,}, C d o  = Diag{cdo} and (12) 

It is a straightforward matter to verify that the two equations 
in (12) can be combined into a real system of equations of 
the f0rm: 

(7) 

Because of the conjugate symmetry of the weight vectors, 
we have c#& = - $ 2 N - k + 1 ,  k = l , . . . , N ,  such that there 
are only N independent phase perturbations, as given by 

d decomposed into the variable and fixed parts: 

4 = [ $ l ,  4 2 ,  ' ' ' > $ N I T .  

(7). Combining (4) and (6) yields the expressions for s and E z = g  (13) 

where 

Re{AF} -Im{AF}  - Im{AH}C, ,  
E = [ Im{AF}  Re{A;} Re{Af}Cd,  

is 2K x (N + 2 4 ,  

and A. Adaptive Interference Cancellation 

sidelobes of the sum and difference patterns may not be low 

sources. It is then necessary to perform adaptive cancellation 
by putting a deep null in the direction of each of the interferers 
for the sum and difference patterns. Assume that the interfering 
directions are first estimated during the passive period of the 
radar via some kind of off-line direction finding algorithm. The 

In the presence of strong out-of-band active interferers, the 

(16) Re{ AFG, } 
enough to provide effective suppression of these undesired = - ["(AFCd,)] 

with Re{ .} and Im{  .} denoting the real and imaginary parts, 
respectively. In general, (13) does not have an exact solution 
for z if K > = 9, meaning that the maximum 
number of interferers which can be nulled is reduced to F. 
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B. Underdetennined Case Note that we have used the following identities, 

For K < y, (13) is an underdetermined system of 
equations whose solution is given by 

Z =  E + g + E y  (17) 

where 

E+ = E H ( E E H ) - l  

is the right pseudo inverse of E, is an ( N f 2 J )  x ( N + 2 J -  
2 K )  matrix having as columns the vectors spanning the null 
space of E ,  and y is an arbitrary real vector of a compatible 
size. 

Since our goal is to retain the shapes of the Chebyshev 
and the Bayliss patterns, a reasonable and convenient way 
to determine the free vector y would be to form the LS-fit 
problem: 

and the fact that r,, and Tdo are both real in obtaining the 
equalities in (20). Since is a (2N + 45) x ( N  + 25 - 2 K )  
full rank matrix, the solution to (20) is given by 

y = ( F H F y F H h .  (26) 

Substituting (26) back into (17) then yields the final form of z. 

C. Modified LS-Fit Objective Function 
=[Is - + (Id - dol l2  (19) 

where ( 1  . 11 denotes the vector 2-norm. so(u)  and do(u) are 
the Chebyshev and Bayliss pattems obtained with so and do, 
respectively. Note that in (19) we have invoked the Parseval’s 
relationship for ULA. Substitution of (9, (8), and (17) into 
(19), with the separation of sharedunshared weights and 
realhmaginary parts, leads to 

and 

The validity of linearization according to (6) lies in that the 
M - 2.1 phase perturbations on the center weights are much 
smaller than one. When this is not the case, the synthesized 
pattems may not exhibit nulls exactly at, or at least close 
to, the specified interfering directions. A remedy would be to 
incorporate a weighting factor in the LS-fit objective function 
(20) to emphasize the errors in the center weights for both 
channels. This is accomplished by modifying (20) into 

rnirlli I7rs{r} 1 11’  + )I [ Im{r> 1 (27) 

where P c  is an N x N diagonal weighting matrix. The mod- 
ification is tantamount to replacing C,, and Cdo by P,C,, 
and P,Cd,, respectively, in (21). With properly selected P,, 
we can control the size of the resulting phase perturbation 
for each of the center weights. A tradeoff that should be 
taken into account is that suppressing phase adaptation will 
result in a poorer approximation between the synthesized and 
desired pattems. Also, working with small phase perturbations 
increases the cost of the system due to the need of high- 
precision phase shifters. 

Although the 2 5  phase perturbations on the tail weights are 
allowed to vary freely, they are typically negligible compared 
to the amplitude perturbations under moderately good con- 
ditions, i.e., a small number of interferers from the sidelobe 
region. In this case, it is possible to work with amplitude- 
only tail weights without severely distorting the synthesized 
patterns. Similar to the modification in (27), we can apply 
a J x J weighting matrix P,  on the subvector Im{r}. By 
choosing the diagonal components of P ,  to be large enough, 
we can “turn off’ the phase adaptation on r. In such a 
mode of operation, high-precision phase shifters are not needed 
for the tail weights. The reduction in system complexity 
with the mixed amplitudelphase-only nulling scheme is more 
significant as the size of the array increases. 

Re{r} - 9 - 5 0  Re{r} - Tdo  

p c c s o 4  p c c d o $  
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D. Effects of Phase Errors 
0,  f ’ \ I 

In practice, the synthesized patterns are distorted by the 
errors in the adaptive weights. These errors can result from 
the deviation in element localizations, mutual coupling, and 
quantization effects in using digitally controlled attenuators .B - ... 

and phase shifters. This section evaluates the effect of phase 
errors on the nulling performance of the adaptive array. Let w 
(either s or d) be the weight vector subject to phase errors and 
w the error-free weight vector. Denote as 64 the M x 1 vector 
composed of the phase errors. Assuming that these phase errors 
are small and following (6), we have 

-10- 

a- 
-30- 

C 
R 

d -70- 

-90 - 

W X W - t j W S t p  

where = Diag{w) ‘  The 
scribed interfering direction uk is given by 

pattern at a pre- Fig. 2. Superposition ofthe normalized Chebyshev and Bayliss patterns with 
-35 dB sidelobes synthesized with a 24-element ULA. Solid line: Chebyshev; 
dashed line: Bayliss. 

w(uk) = wHa(uk) z -jSdTwHa(uk) (29) 

where we invoked W ( U ~ )  = wHa(uk) = 0 since Uk is a null 
of the error-free pattern. We observe from (29) that the effect 
of a phase error on w(uk) is enhanced by the corresponding 
amplitude weight. Also, lw(uk)l is small if the phase errors are 
approximately equal. This is, of course, not a realistic situation. 

Another effect of phase errors is the change in the position of 
a null. Suppose that the original null at Uk is shifted to U k  + Su 
by a small amount SU. Using the first-order approximation, 
we get 

W ( U k  + 6th) z W(Uk) + W’(Uk)SU 0 (30) 

where w’(u) denotes the derivative of W ( U )  with respect to U .  

Solving (30) for Su gives 

It is noteworthy that the solution in (31) may not be real. In 
this case, there is actually no null formed in the vicinity of 
Uk. That is, the original null has been “filled.” A sufficient 
condition for Su to be real is that 64 is antisymmetric such 
that w is conjugate symmetric. This in turn ensures that both 
w(u) and W ’ ( U )  are real. Antisymmetric phase errors can be 
obtained if they arise from the quantization effect of using 
digital phase shifters. 

The performance of an adaptive array using digital phase 
shifters has been discussed [9]. It is shown that nulling with 
full phase-only adaptation based on the small perturbation 
assumption is not reliable if low-precision phase shifters are 
used. This is because the small phase perturbations obtained 
with the algorithm cannot change the state of low-precision 
phase shifters. To remedy this, partial phase-only adaptation 
was suggested as a means of obtaining large phase perturba- 
tions. The previously described weighting method provides an 
alternative way to tackle the problem of working with low- 
precision phase shifters. By turning off the phase adaptation 
on the tail weights and imposing a small weighting factor on 
the center weights, large phase perturbations can be obtained. 
However, care must be taken to avoid severe distortions of 
the synthesized patterns. 

IV. NUMERICAL EXAMPLES 

Computer simulations were conducted to ascertain the ef- 
fectiveness of the proposed LS-fit based procedure for pattem 
synthesis. The ULA used was composed of 24 identical el- 
ements with a half-wavelength interelement spacing. The 
sidelobe levels of the desired Chebyshev and Bayliss patterns 
were the same equal to -35 dB. Fig. 2 shows the desired 
patterns in dB scale. Note that we have normalized the 
corresponding weight vectors, so and do, so as to have a 
“hard” shared weights at the 6th and 19th elements, regardless 
of the actual value of 5 .  For J < 6,  the extra shared phase- 
only weights may be considered as offered by the degree of 
freedom in scaling the weight vectors. 

The first set of examples demonstrates how the synthesized 
patterns change with the numbers of shared tail weights. 
The estimated interfering directions were -45”, 35”, and 
50”. In this case, no weighting matrixes were applied in the 
objective function. The patterns synthesized with the procedure 
described in Section 111 are shown in Fig. 3 for J = 0, 4, 
6, and 8. It is observed that the approximation between the 
synthesized and desired patterns improved as J was increased 
from 0 to 6, but degraded with J = 8. This confirms 
our earlier statement that the appropriate number of shared 
weights is 2 5  = % = 12. For J = 0, there were actually 
no variable amplitude weights used and the patterns were 
synthesized solely with phase adaptation. Although it is simple 
to implement, working with full phase-only weights leads to 
poor nulling effect, as can be seen by comparing the depths 
of the nulls formed at the interfering directions in Figs. 3(a) 
and (c). 

The second set of examples investigates the effect of using 
different weighting matrixes in the modified objective function 
of (27). The estimated interfering directions were the same as 
those given previously. The number of shared tail weights was 
fixed at 25 = 12. In the first case, the tail weights were not 
weighted, and the center weights were weighted with P ,  = 
516 and 100016. Comparing the resulting patterns shown in 
Fig. 4(a) and (b) with Fig. 3(c) (corresponding to P, = 1 6 ) ,  

we find that the nulls formed at the interfering directions 
were deeper as the center weights were more emphasized. To 
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Fig. 3.  
J = 4. (c )  J = 6. (d) J = 8. Solid line: sum; dashed line: difference. The interfering directions are -45", 35", and 50". 

Superposition of the LS-fit low-sidelobe patterns synthesized with a 24-element ULA for different number of shared tail weights. (a) J = 0. (b) 

see this, we note that a large weighting factor for the center 
weights in the LS-fit objective function leads to small phase 
perturbations, which in turn means that the error incurred with 
the approximation in (6) is reduced. As a result, the accuracy of 
nulling angles was improved. Note that with P ,  = 100016, the 
phase adaptation on the center weights were essentially tumed 
off, leading to a system completely controlled by the shared 
tail weights. On the other hand, comparing the entire patterns 
shown in the three plots indicates that a small weighting factor 
for the center weights yields a better approximation between 
the synthesized and desired patterns. This is consistent with 
our earlier assertion that incorporating phase-only adaptation 
offers a larger degree of freedom for the LS-fit problem. 
In the second case, the center weights were not weighted, 
and the phase adaptation on the tail weights was tumed off 
with P ,  = l O O O I 6  applied on Im{r} .  We observe that low 
sidelobes were retained by the resulting pattems, shown in 
Fig. 4(c). This confirms the effectiveness of using amplitude- 
only tail weights against sidelobe interference. 

The final set of examples examines the nulling capability 
of the proposed method against extended interference. In the 
assumed scenario, an interfering source occupied the angular 

interval [31", 40'1. Four point nulls were formed at 31", 34", 
37", and 40" to generate an effective broad null over the 
interfered region. The pattems obtained with the unweighted 
objective function are shown in Fig. 5(a), with J = 6. We 
observe that the sidelobe level in the interfered region was 
about -70 dB relative to the mainlobe peak of the sum pattern. 
The sidelobes outside the interfered region were kept pretty 
flat, though a little higher than the desired -35 dB. As a 
comparison, we also show in Fig. 5(b) and (c) the results 
obtained with (P, ,  P T )  = (10001~, 1 6 )  and (16, iOOO16), 
respectively. We note that the patterns were severely distorted 
with the phase adaptation on the center weights tumed off. On 
the other hand, working with amplitude-only tail weights did 
not degrade the results much. These indicate that incorporating 
phase adaptation on the center weights is more critical in 
dealing with complicated interference. 

V. CONCLUSION 

A simple LS-fit based method was proposed for the syn- 
thesis of low-sidelobe adaptive sum and difference pattems 
for linear arrays. The new method exploited the fact that 
the tail portions of the Chebyshev and Bayliss tapers are 
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Fig. 4, ~ ~ ~ ~ ~ i t i ~ ~  of the LS-fit ~ow-side~obe a 
24.element ULA using different weighting factors in the function. 
(a) P ,  = 516. (b) P ,  = 1O0OI6. (c) p ,  = 10001~. Solid line: sum; dashed 
line: difference. me interfering directions are -450, 350 ,  and 500, J = 6 
for all cases. 

synthesized Fig. 5.  Superposition of the LS-fit low-sidelobe pattems synthesized with a 
24-element ULA using different weighting factors in the objective function. 
(a) Unweighted. (3) P ,  = " 3 6 .  (C)P, = 100016. Solid line: sum; dashed 
line: difference. Four nulls are formed at 31", 34". 37", and 40" to produce 
a broad null. J = 6 for all cases. 

similar in shape such that the sum and difference beamformers 
producing the desired low-sidelobe patterns can in fact share a 
set of common tail weights. It was found that the appropriate 
choice is that one-fourth of the weights from both ends of 
the aperture are shared. System complexity was further eased 
by forcing the amplitudes of the center portions of the sum 

and difference weights to be fixed. AS a result, the number 
of variable amplitude weights needed was reduced from 2M 
to $, where M is the number of array elements. Phase-only 
adaptation was incorporated on the unshared center weights to 
recover the degree of freedom in pattern synthesis. By using 
different weighting factors in the LS-fit objective function, 
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several configurations of the adaptive weights were obtained 
that exhibited different tradeoffs between performance and 
complexity. Numerical examples demonstrated that the pro- 
posed method was effective in combating both point and 
extended interference. 
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