Multinary Selenides with Unusual Coordination Environment of Bismuth

Ming-Yan Chung and Chi-Shen Lee*

Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan

Supporting Information

ABSTRACT: New multinary selenides Ae₃SnPn₂Se₈ (Ae = Sr, Ba; Pn = Sb, Bi), Sr₈₀Ge₂₀Bi₇₉₅Se₂₄, and Sr₈YGe₂Bi₂Se₂₄ were synthesized by solid-state reaction, and their structures were determined by single-crystal X-ray diffraction. These compounds crystallize in orthorhombic space group Pnma (no. 62) for Ae₃SnPn₂Se₈ (Ae = Sr, Ba; Pn = Sb, Bi) and in Pnma (no. 33) for Sr₈₀Ge₂₀Bi₇₉₅Se₂₄ and Sr₈YGe₂Bi₂Se₂₄. The structures feature one-dimensional corner sharing tetrahedral [MSe₄] units, and one-dimensional edge sharing octahedral [M₁₄Se₉]∞ units, and one-dimensional edge sharing octahedral [M₁₄Se₉]∞ units, packed with the alkaline earth or rare earth cations. Sr₈₀Ge₂₀Bi₇₉₅Se₂₄ and Sr₈YGe₂Bi₂Se₂₄ contain a triple cell superlattice structure derived from a special arrangement of Bi and Ge in the tetrahedrally coordinated 1/3[MSe₃] chain. Diffuse reflectance spectra and electronic resistivity measurements indicate semiconducting behaviors; the Sr₈YGe₂Bi₂Se₂₄ Seebeck coefficient is −180 μV/K at 303 K. Electronic structure calculations confirm that the electron count for Sr₈YGe₂Bi₂Se₂₄ is optimal for interatomic bonding in the ionic network.

1. INTRODUCTION

Metal chalcogenides show a rich structural diversity and have unusual physical and chemical properties, which have been the subject of intensive research for applications in solar energy conversion and thermal electricity. Among these materials, multinary chalcogenides with alkali, alkaline earth, and rare earth elements are of particular interest. Incorporating large cations reduces chalcogenide dimensionality, which is expected to reduce thermal conductivity resulting from ionic interactions between the cation and chalcogen anions, so enhancing thermoelectric properties. Ternary metal chalcogenides incorporated into thermoelectric devices have applications in energy conversion and infrared detection. Many new metal chalcogenide phases have appeared during the past decades, which can be summarized as the A/M/Q (A = alkali, alkaline earth, or rare earth metal; M = group 3 lanthanide; M = M, M′ main group element) homologous series with unique 4-coordinated Sb environments were reported. Multinary chalcogenides in A/M/Q (A = alkaline, alkaline earth, lanthanide; M = M, M′ main group element; Q = S, Se, Te), such as A₃Bi₄Se₇ (A = Rb, Cs), A₄TtQ₄ (A = Sr, Ba, Eu; Tt = Ge, Sn; Q = S, Se), A₅Bi₅Se₁₃ (A = Cs, Rb), A₅TtQ₅ (A = K, Rb, Tt = Ge, Sn; Q = S, Se), La₃Tt₁.₂5S₇ (Tt = Ge, Sn), etc., have been investigated during the past decade. Because of the rich diversity of chalcogenide phases, and the possibility of these compounds bearing favorable thermoelectric properties, the Ae/Tt/Pn/Q (Q = S, Se) systems were targeted for synthesis of new phases, with unique structure and properties. This paper presents part of our systematic investigation into multinary chalcogenides. Our previous work in the selenide system revealed a new quaternary phase, Sr₃GeSb₂Se₆. In this study, we extend this system to search for new analogues with the general formula “Ae₃TtPn₄Q₉” (Ae = Sr, Ba; Tt = Ge, Sn; Pn = Sb, Bi). Here, we present five new multinary selenides for the first time. The general structural building blocks for these new phases are similar to that of the previously reported Sr₃GeSb₂Se₆. Moreover, we isolated two compounds with a superlattice structure with an unusual coordination environment for the Bi atom. We determined the electronic structures of these selenides from electronic structure calculations, which subsequently informed the synthesis of Sr₈YGe₂Bi₂Se₂₄.

Received: September 18, 2012
Published: December 3, 2012

© 2012 American Chemical Society
Ground powder samples were pressed onto a thin glass slide holder, a program utilizing PXRD patterns. Di in a 2θ spectrophotometer (Jasco V-570); an integrating sphere was used to extrapolate the linear regions of each. Fraction measurements of reactions were directly synthesized by a typical reaction, stoichiometric proportions of the pure elements were carried out, and we confirmed that a new quintet phase was 25 s/frame for Ba3SnBi2Se8 and 40 s/frame for other samples. The samples were annealed at 773 K for 6 days before the measurement. The Seebeck coefficient was measured on a cold-pressed bar (1 mm × 1 mm × 5 mm) using commercial thermopower measurement apparatus (MMR Technologies) in the temperature range 300–600 K under a dynamic vacuum (∼10⁻⁷ Torr).

2. EXPERIMENTAL SECTION

2.1. Synthesis. All operations on compounds were performed in a glovebox with a dry nitrogen atmosphere. Chemicals were used as obtained (from Alfa Aesar)—Ba, 99.00%, chunks; Sr, 99.00%, chunks; Ge, 99.50%, powder; Sn, 99.80%, powder; Sb, 99.90%, powder; Bi, 99.50%, powder; Se, 99.95%, powder; Y, 99.00%, chunks; La, 99.00%, chunks.

Initially, three TiPnPn2Q8 (Ae = Ca, Sr, Ba; Tt = Ge, Sn; Pn = Sb, Bi; Q = Se) were carried out to synthesize analogues of SrGeSe2. In a typical reaction, stoichiometric proportions of the pure elements were mixed in an N2-filled glovebox (total mass ~0.5 g), placed in a carbon-coated silica tube, sealed under dynamic vacuum, and slowly heated to 1023 K over 48 h. This temperature was maintained for one day, followed by slow cooling to 73 K at a rate of 15 K/h, and finally to about 300 K (room temperature) by simply terminating the power.

In general, these reactions yielded polycrystalline ingots with a metallic luster. Powder X-ray diffraction measurements of reaction products for Ba3SnBi2Se8, Sr3SnBi2Se8, and Ba3SnSb2Se8 were directly synthesized by a typical reaction, stoichiometric proportions of the pure elements were mixed in an N2-filled glovebox (total mass ~0.5 g), placed in a carbon-coated silica tube, sealed under dynamic vacuum, and slowly heated to 1023 K over 48 h. This temperature was maintained for one day, followed by slow cooling to 73 K at a rate of 15 K/h, and finally to about 300 K (room temperature) by simply terminating the power.

In the electronic structure calculations, a charge balance model was used. The electronic structure calculations used a charge balance model with general formula "Ae2Re2Tt4Pn4Q8" (Ae = Sr, Ba; Re = Y, La; Tt = Sn; Pn = Sb; Bi; Q = S, Se). Reactions derived from that formula were carried out, and we confirmed that a new quintet phase of SrGeSe2 was successfully synthesized and characterized.

2.2. Characterization. Powder X-ray diffraction (PXRD) was carried out using a Bruker D8 Advance diffractometer (operated at 40 kV and 40 mA, Cu KR, λ = 1.5418 Å). The PXRD data were obtained in a 2θ range from 5° to 60° using a 0.01° step size and 1 s/step exposure time. The unit cell parameters were examined by CELREF program utilizing PXRD patterns. Diffuse reflectance measurements were performed at approximately 25 °C with a UV–visible spectrophotometer (Jasco V-570); an integrating sphere was used to measure the diffuse reflectance spectra over the range 200–2000 nm. Ground powder samples were pressed onto a thin glass slide holder, and a BaSO4 plate served as a reference. The band gap was determined by extrapolating the linear regions of each (αhv)² versus energy plot to (αhv)² = 0.36. Analyses of as-synthesized crystalline samples with energy-dispersive spectra (SEM/EDX, Hitachi H-7500 Scanning Electron Microscope) showed the presence of constituent elements. Measurements of differential thermal analysis (DTA) were performed with a thermal analyzer (NETZSCH STA 409PC). Powder samples (approximately 40 mg) were sealed in silica capsules and placed in alumina crucibles. After heating to 1073 K with a rate of 10 K/min, the samples were cooled to 673 K at 10 K/min under a constant flow of N2. Electrical resistivity measurements were performed using the standard four-probe method on cold pressed bars (1 mm × 1 mm × 5 mm). The samples were annealed at 773 K for 6 days before the measurement. The Seebeck coefficient was measured on a cold-pressed bar (1 mm × 1 mm × 5 mm) using commercial thermopower measurement apparatus (MMR Technologies) in the temperature range 300–600 K under a dynamic vacuum (∼10⁻⁷ Torr).

2.3. Single-Crystal X-ray Diffraction. Single crystals (~0.04 mm × 0.04 mm × 0.12 mm) obtained from products of the reactions of SrGeSe2, SrGe2Bi2Se6, Sr3SnBi2Se8, Ba3SnBi2Se8, and Ba3SnSb2Se8 were mounted on glass fibers with epoxy glue. Intensity single-crystal X-ray diffraction (SXRD) data were collected on a diffractometer of Bruker APEX CCD equipped with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The distance from the crystal to the detector was 40 cm. The duration of exposure was 25 s/frame for Ba3SnBi2Se8 and 40 s/frame for other samples. The 2θ values varied between 2.74° and 56.56°. Diffraction signals obtained from 200 frames of reciprocal-space images were utilized to determine unit-cell parameters. The APEX 2 program package was used for the structure determination and refinement. Absorption corrections were based on fitting a function to the empirical transmission surface, as sampled by multiple equivalent measurements of numerous reflections. Further details of crystallographic analysis for all crystal data are available as the Supporting Information, and the results are listed in Tables 1, S1, and S2.

2.4. Calculation of Electronic Structure. Tight binding of linear muffin-tin orbitals (LMT0) with atomic sphere approximation (ASA) were undertaken to understand the electronic structure in LMTO, we use density functional theory with local density approximation (LDA), Three hypothetical models, SrGe2Bi2Se6, SrGe2Bi2Se6, and SrGe2Bi2Se6 were constructed. The SrGe2Bi2Se6 and SrGe2Bi2Se6 models were obtained from the SXRD data of I, whereas the SrGe2Bi2Se6 model was derived from the structure of II. The k space integration was performed on a grid of more than 300 independent k-points. We analyzed the electronic structures using information from densities of states (DOS) and crystal orbital-Hamiltonian population (COHP) curves.
2. RESULTS AND DISCUSSION

3.1. Synthesis and X-ray Powder Diffraction. Initially, SXRD analysis for I gave an unclear result with a formula Sr\(_7\)Ge\(_{20}\)Bi\(_{8}\)Se\(_{34}\) (charge = −0.96/formula). To extend the study for the pure phase and analogue compounds, reactions with slightly different compositions were carried out and these reactions contained formula of deficient Se, deficient cations, interstitial cations, and constrained Ge/Bi composition for cation sites. Finally, pure phase of I was observed from the reaction “Sr\(_{18}\)Ge\(_{50}\)Bi\(_{8}\)Se\(_{34}\)” which suggests Bi and Sr atoms are mix-occupied. Subsequently, we successfully prepared single phases of II, IV, and V, while compound III could not be isolated in a pure state. The PXRD patterns of I, II, IV, and V are comparable to their theoretical patterns (Supporting Information Figure S1–S4).

3.2. Structural Description. 3.2.1. Sr\(_{8.01}\)Ge\(_{2.04}\)Bi\(_{7.95}\)Se\(_{24}\) (I) and Sr\(_{8}\)YGe\(_{2.10}\)Bi\(_{7.83}\)Se\(_{24}\) (II). I and II crystallize in a novel structure type with the Pna\(_21\) space group, belonging to the family of Sr\(_3\)GeSb\(_2\)Se\(_8\)-related structures; this is best described as an ordered superstructure of Sr\(_3\)GeSb\(_2\)Se\(_8\). To simplify the discussion, we use the structure of II as a representative and describe this structure in detail.

The structure is more complex than that of III, and the structure of II is shown in Figure 1a. The ionic network is made up of the same 1D chains as III is. However, the electron densities of metal sites in the [MSe\(_3\)] \(_1\) 1D chain show significant differences. SXRD data indicate that the centers of the tetrahedral polyhedra contain bismuth and germanium at different sites. These are interlinked through corners to form a one-dimensional chain running along the c-axis. The BiSe\(_4\) tetrahedra are further connected via two GeSe\(_4\) tetrahedral units to form the 1D chain, [GeSe\(_4\) \(_2\)] \(_1\) (BiSe\(_4\) \(_3\)) (GeSe\(_4\) \(_2\)), as shown in Figure 1b. The Bi and Ge positioning along the 1D chain is the reason that the super cell structure of II is three times larger than that of III. The local environment of tetrahedral BiSe\(_4\) has two short contacts of approximately 2.70 Å and two remote contacts at about 2.90 Å. Tetrahedral GeSe\(_4\) of similar structure has contacts ranging from 2.34 to 2.40 Å. To our knowledge, both the tetrahedral Bi coordination and special sequences of the 1D tetrahedral chains were first investigated in the chalcogenide system.

The second unit, [Bi\(_{8}\)Se\(_{24}\) \(_8\)], is constructed from Bi(5A)–Bi(6C) octahedra. The Bi–Se contacts in the M(5A)–(6C) environment range from 2.71 to 3.10 Å, comparable to those of SrBiSe\(_4\). The ellipsoid plots of the first and second parts in III and II are illustrated in Supporting Information Figure S5. The third part, Sr (or Y), is coordinated to seven or eight Se atoms, forming monocapped or bicapped trigonal prismatic environments. The Sr–Se (or Y–Se) contacts range from 3.10 to 3.66 Å, comparable to those of SrBiSe\(_4\) and Y\(_3\)CuGeSe\(_7\).

To investigate systematic differences between Bi atoms in tetrahedral and octahedral environments, the bond valence sums were calculated from Bi parameters for M(4B) and M(5A)–(6C) sites in II (Supporting Information Table S3). The values range from 3.15 to 3.33, close to the oxidation state of Bi\(^{3+}\).

3.2.2. Sr\(_3\)Sn\(_{0.96}\)Bi\(_{2.04}\)Se\(_8\) (III), Ba\(_3\)SnSb\(_2\)Se\(_8\) (IV), and Ba\(_3\)Sn\(_{0.87}\)Bi\(_{2.13}\)Se\(_8\) (V). III–V are isosstructural with Sr\(_3\)GeSb\(_2\)Se\(_8\). Here we focus on III as their representative. The structure contains 14 crystallographic sites: there are distinct Sr atoms (Sr(1)–(3)), two for mixed occupancies of Sn and Bi (M(4), M(6)), one for Bi (M(5)), and eight for Se atom (Se(1)–(8)). The structure is illustrated in Figure 2a with a view along the b-axis. The ionic environment of III contains two types of one-dimensional units. The first type is made up of MSe\(_4\) tetrahedral polyhedra interlinked through two corners to form one-dimensional chains \([\text{MSe}_3]\) that run along the b-axis (Figure 2b). The second type contains four MSe\(_6\) octahedral units, fused to form an edge-shared \([\text{MSe}_{10}]\) unit; this type is also extended along the b-axis. One-dimensional chains of \([\text{MSe}_3]\) and \([\text{MSe}_{10}]\) units are parallel to the a-axis and form alternate layers of one-dimensional (1D) chains. Sr\(_2\)-cations fill the interstitial sites between these chains, similar to many alkali/alkaline earth chalcogenide compounds.

The distinct Sr(1)–(3) sites are stable in a monocapped or bicapped trigonal prism environment with a Sr–Se range of 3.14–3.71 Å. The M(4) site has a distorted tetrahedral environment, comprising mixed-occupation by 86% Sn and 14% Bi, and is coordinated by four selenium atoms. The M-Se distances are in the range 2.46–2.77 Å, slightly larger than the Sn–Se contacts (2.47–2.62 Å),\(^{39}\) indicative of a small Bi contribution. M(5) and M(6) are 100% Bi, and 86%/14% Bi/Sn, respectively. M(5) coordinates to three short (approximately 2.80 Å), two medium (approximately 3.06 Å), and one long (approximately 3.54 Å) M–Se distances, whereas the M(6) site is located in a distorted octahedral environment with an M(6)–Se distance in the range 2.75–3.05 Å. The M-Se contacts in M(5)–(6) sites are comparable to some multinary chalcogenide complexes, such as EuBiSe\(_4\)\(^{40}\) and Rb\(_2\)Bi\(_2\)Se\(_6\).\(^{19}\)

3.3. Physical Properties. Optical properties for I, II, IV, and V were measured by UV–vis diffuse reflectance spectroscopy. We calculated the optical band gaps using the relation: \(E_g = A(h\nu - E_\text{g})^m\), where \(A\) is a constant, \(h\nu\) is the incident
photon energy, and $m = 0.5$ and 2 for direct and indirect transitions, respectively.29 Plots of $(\alpha \nu)^2$ vs ν are shown in Figure 3. The optical band gaps of I, II, IV, and V are 0.74, 0.70, 0.97, and 0.79 eV, respectively.

Supporting Information Figure S6 shows DTA curves versus temperature for I, II, IV, and V. The DTA measurements for these compounds share similar features, with exothermic absorption beginning at 1060, 1065, 970, and 1130 K for I, II, IV, and V, respectively, corresponding to the melting points of those compounds.

The temperature dependence of I, II, IV, and V electronic resistivities were determined using the four probes method, in the temperature range 300–600 K (Figure 4). Resistivity gradually increases with decreasing temperature for all phases, indicating semiconductor behavior. The calculated activation energies for I, II, IV, and V are respectively 0.41, 0.22, 0.51, and 0.67 eV, and this trend is consistent with our diffuse reflectance results.

Figure 5 is a plot of the Seebeck coefficient of II against temperature. We were unable to determine the coefficient of the remaining compounds, due to their high resistivity exceeding the limitations of our instrument. II features negative Seebeck coefficients between 300 and 550 K, indicative of an n-type semiconductor.

3.4. Electronic Structure

To understand the electronic structure of these selenides, we derived three hypothetical models, $\mathrm{Sr}_9\mathrm{Ge}_3\mathrm{Bi}_6\mathrm{Se}_{24}$ (1), $\mathrm{Sr}_9\mathrm{Ge}_2\mathrm{Bi}_7\mathrm{Se}_{24}$ (2), and $\mathrm{Sr}_8\mathrm{YGe}_2\mathrm{Bi}_7\mathrm{Se}_{24}$ (3) with different occupancies at the main group metal positions (see Supporting Information Table S4).

For model 1, the Fermi level ($V_{\text{Fermi}} = 204 \text{ eV}/[\mathrm{Sr}_9\mathrm{Ge}_3\mathrm{Bi}_6\mathrm{Se}_{24}]$) is close to the local minima of the total DOS (TDOS) and there is a nonzero contribution of electronic states at the Fermi level (Figure 6a), thus we could not model semiconducting properties from the electronic band-structure structure calculations. According to the COHP analysis, the Ge–Se bonding interactions are not optimal, and there is some antibonding character present.

Figure 2. Crystal structures of III (a) in a projection along the b-axis [010] and its $\infty_1 \left[\mathrm{MSe}_3 \right]$ chains (b).

Figure 3. Plots of $(\alpha \nu)^2$ vs photon energy (eV) for I (black), II (red), IV (blue), and V (green).

Figure 4. Temperature dependence of electrical resistivity of I, II, IV, and V.

Figure 5. Temperature dependence of thermoelectric power of II.
Model 2 features a triple cell structure with a formula of \(\text{Sr}_9\text{Ge}_2\text{Bi}_7\text{Se}_{24} \), and the results are plotted in Figure 6b. It is clear that a band gap is present at 206 e\(^{-}\)/formula, which is one electron greater than for \(\text{Sr}_9\text{Ge}_2\text{Bi}_7\text{Se}_{24} \) (205 e\(^{-}\)/formula). The result suggests that a hypothetical composition, providing 206 e\(^{-}\)/formula, such as \(\text{Sr}_9\text{GeBi}_8\text{Se}_{24} \) (replacing Ge with Bi) or \(\text{Sr}_8\text{YGe}_2\text{Bi}_7\text{Se}_{24} \) (replacing Sr with Y), will form a stable phase. Attempts to prepare these two compounds yielded instead the quintet phase \(\text{Sr}_8\text{YGe}_2\text{Bi}_7\text{Se}_{24} \).

The \(\text{Sr}_8\text{YGe}_2\text{Bi}_7\text{Se}_{24} \) DOS curve (Model 3) is illustrated in Figures 6c and 7a. These plots reveal a clear band gap, with optimal valence elections, at 206 e\(^{-}\)/formula. The occupied DOS region contains several sections. The dominant valence band below \(-5\) eV arises from the \(n_s \) states of the main group elements, while the \(np \) states mostly occur between \(-5\) eV to the Fermi level. The conduction band contains primary Bi 5p, Sr 4d, Y 4d, and Se 4p states, hybridized with minor contributions from the Se 4s and Ge 3p states.

We investigated COHP curves to gain insight into the electronic characteristics of Ge–Se and Bi–Se coordination, shown in Figure 7b and c. The selected Ge–Se contact is essentially optimized. For the selected Bi4–Se contact, the weak interactions extend between \(-0\) and \(-3.5\) eV, distinct from typical Bi3\(^{+}\) interactions. For comparison, the Bi5–Se contact has some antibonding character in a range \(0 \) to \(-1\) eV, which may arise from localization of the lone-pair electrons on Bi. The ICOCOH values for Bi4–Se and Bi5–Se contacts are respectively 1.46 and 1.06 (eV/bond), indicative of greater bonding strength for Bi4–Se than is present in the Bi5–Se contacts. The Bi4 has shorter Bi–Se contacts than Bi5 does, resulting in greater bond energy. This confirms that such tetrahedral coordination stabilizes the Bi3\(^{+}\) ion.

4. CONCLUSIONS

Five new chalcogenides: \(\text{Sr}_{8.01}\text{Ge}_{2.04}\text{Bi}_{7.95}\text{Se}_{24} \) (I), \(\text{Sr}_9\text{Ge}_2\text{Bi}_7\text{Se}_{24} \) (II), \(\text{Sr}_3\text{Sn}_{0.96}\text{Bi}_{2.04}\text{Se}_8 \) (III), \(\text{Ba}_3\text{SnSb}_2\text{Se}_8 \) (IV), and \(\text{Ba}_3\text{Sn}_{0.87}\text{Bi}_{2.13}\text{Se}_8 \) (V) were prepared and characterized. These compounds contain one-dimensional building units, \(1_\infty[\text{MeSe}_3] \) and \(1_\infty[\text{MeSe}_{10}] \), surrounded by alkaline earth, or rare earth, cations. The sequence \(1_\infty[(\text{GeSe}_3)^{(2-)}](\text{BiSe}_3^{3-})(\text{GeSe}_3)^{(2-)}] \) was observed in I and II. This novel one-dimensional structure contains a new tetrahedral Bi environment, which is responsible for the existence of a superlattice structure. Diffused reflectance spectral and electrical resistivity measurements indicated semiconductor behaviors for I, II, IV, and V. The Seebeck coefficient for II indicates n-type semiconductor behavior at room temperature. Electronic structure calculations suggest optimized bonding, and a bandgap at 206 e\(^{-}\)/formula. On the
basis of theoretical calculation, we successfully prepared the new quintet phase, II.

ASSOCIATED CONTENT

Supporting Information

(1) Crystallographic analysis of I–V, (2) experimental and simulated X-ray powder patterns for compounds I–IV, (3) ellipsoid plots of $\mathbf{a}_1\mathbf{[MSe_3]}$ and $\mathbf{a}_1\mathbf{[M_2Se_6]}$ units, (4) differential thermal analysis (DTA) of I, II, IV, and V, (5) reconstructed image of [0kl] zone axis of I, (6) fractional atomic coordinates and equivalent isotropic atomic displacement parameters and site occupancies for I–V, (7) bond valence sums of M(4)–(6) in I, and (8) models of electronic structure calculation. These materials are available free of charge via Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: chishen@mail.nctu.edu.tw

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Professor Eric W.-G. Diau for measurements of UV diffuse reflectance. National Science Council (NSC98-2113-M-009-007-MY3) supported this research.

REFERENCES

(29) Han, J.; Spanheimer, C; Handl, G; Fu, Ganhua; Krishnakumar, V; Schaffner, J; Fan, C; Zhao, K; Klein, A; Jaegermann, W *Solar Energy Mater. Solar Cells* 2011, 95, 816.