Message Ferry Routing Algorithm for Data Collection in Partitioned and Buffer-Limited Wireless Sensor Networks

JYH-HUEI CHANG AND RONG-HONG JAN
Department of Computer Science
National Chiao Tung University
Hsinchu, 300 Taiwan

In some particular environments such as battlefield, disaster recovery and wide area surveillance, most existing routing algorithms will fail to deliver messages to their destinations. Thus, it is an important research issue of how to deliver data in disconnected wireless sensor networks. This paper presents two efficient message ferry routing algorithms, denoted as MFRA1 and MFRA2, for data collection in disconnected wireless sensor networks. Both algorithms are designed to find feasible routes for the message ferry such that the buffers of sensors will not overflow after a complete sequence. A complete sequence is the visit sequence of message ferry which visits every sensor node at least once. We find the shortest sequence for message ferry which visits every sensor exactly once and then we check the feasibility of the visit sequence. If there is a sensor overflow, MFRA1 and MFRA2 fix the overflow by partitioning the initial visit sequence into some sub-sequences such that the ferry visits the overflow node twice in the resulting sequence. The above process will continue until a feasible solution is found. Simulation results show that both MFRA1 and MFRA2 are better than other schemes in terms of the amount of data lost, because the other schemes neglect the case of sensor overflow.

Keywords: message ferry, routing algorithm, data collection, sensor networks, partitioned networks

1. INTRODUCTION

In disconnected wireless sensor networks, most existing routing algorithms will fail to deliver messages to their destinations. The Message Ferry scheme is an approach for message delivery in the disconnected wireless sensor network. As shown in Fig. 1, there is a wireless sensor network with several separated sub-networks. Each sub-network has a rendezvous node to connect and buffer the data. A special node, called Message Ferry, visits these rendezvous nodes to collect the buffered data of the sensing field based on a pre-defined route. The message ferry route problem is to find a route for message ferry to visit rendezvous nodes and collect data.

1.1 Our Proposed Scheme

The previous schemes focus on the routing problems under the assumption that the buffer size of each sensor node is unlimited. These schemes do not deal with the condition that the sensor may overflow and thus the sensing data will lose.

In real applications, there are different kinds of sensors such as surveillance sensors and data sensors. The surveillance sensor has high sampling rate to capture video mes-
sages. The data sensor has low sampling rate to collect temperature or noise data. In such a sensing environment, each sensor has a limited buffer size and thus the surveillance sensor may overflow before the message ferry visits all sensor nodes. It is a serious problem that a sensor loses critical messages due to overload. Therefore, how to avoid overflow should be an important research issue in the message ferry routing problem. This paper presents two novel message ferry routing algorithms to find feasible solutions under the limited buffer size constraint for disconnected wireless sensor networks.

In our network model, we assume that the message ferry has infinite memory and can move to visit each rendezvous node. All sensors are static and have a limit buffer size. The main idea of the proposed Message Ferry Routing Algorithms (MFRA1 and MFRA2) is that we find the shortest visit sequence for message ferry which visits every sensor exactly once and then we check the feasibility of the visit sequence. If there is a sensor overflow, MFRA1 and MFRA2 fix the overflow by partitioning the initial visit sequence into some sub-sequences such that the ferry visits the overflow node twice in the resulting sequence. Then, we check the feasibility of the current sequence until a feasible solution is found.

Simulation results show that both MFRA1 and MFRA2 algorithms perform better than Greedy and Nearest Neighbor algorithms in term of the amount of data lost. Greedy and Nearest Neighbor algorithms will lose data when sensors overflow. MFRA1 and MFRA2 algorithms can solve the problem of buffer overflow.

The remainder of this paper is organized as follows. In section 2, we define the problem formulation and network model. Section 3 illustrates the details of the proposed algorithms. The simulation results and performance analysis are shown in section 4. Finally, the conclusions are given in section 5.

1.2 Related Work

Several schemes have been proposed to solve the message ferry route problem in partitioned wireless ad hoc networks [1-5]. In [1], the authors propose a message ferry scheme to solve the data delivery problem in high-partitioned wireless ad hoc networks.
In [2], the authors introduce a non-randomness in the movement of nodes to improve data delivery performance and reduce the energy consumption in sensor nodes. Epidemic routing [4] is also a well-known routing method for partitioned wireless ad hoc networks. In this scheme nodes forward messages to other nodes they meet. However, this scheme transmits many redundant messages. Compared to Epidemic routing, message ferry scheme is very efficiency in data delivery and energy consumption. However, the synchronization between nodes and ferry is a problem in the message ferry scheme. An optimized way-points (OPWP) algorithm [3] was proposed. It generates a ferry route to achieve good performance without any online collaboration between nodes and the ferry. OPWP outperforms other naive ferry routing schemes.

Many studies deal with efficient routing for intermittently connected mobile ad hoc networks [6-13]. In [6, 7], the authors proposed a routing scheme with two types of ferries and gateways. This scheme improves delivery rate and delay without online collaboration between ferry and mobile nodes. However, the local message ferry, global message ferry and gateway nodes of this scheme need more resources to buffer the messages. In [8], the authors proposed single-copy routing schemes that use only one copy per message, and hence significantly reduce the resource requirements of flooding-based algorithms. In [9], the authors proposed a routing scheme that sprays a few message copies into the network, and then routes each copy independently toward the destination. This scheme can reduce the delay in flooding-based scheme.

Some studies deal with the data scheduling problem for message ferry [14, 15]. In [14], the authors present an elliptical zone fording (EZF) scheme for a ferry to deliver messages among partition nodes that are moving around. EZF scheme gives priority to urgent messages that are already in the message ferry buffer. However, there may be urgent message waiting to be picked up at other nodes that have closer deadlines than the most urgent message in the delivery up queue. Three ferry routes with look-ahead schemes were proposed in [15] to overcome the drawback of EZF scheme. The dynamic look-ahead scheme provides the best performance compared with other schemes.

Several studies focus on mobile element scheduling problem [16-18] for wireless sensor networks (WSNs). The mobile element works as a mobile sink in WSNs, which is similar to the message ferry. In [16], the authors present an architecture to connect sensors in sparse sensor networks. The advantage of this scheme is the potential of large power savings that can occur at the sensors because communication takes place over a short-range. Its disadvantage is the increasing latency because sensors have to wait for a mobile element to approach before the transfer can occur. In [17], the authors proposed a load balancing algorithm to balance the number of sensor nodes that each mobile element services. The network scalability and traffic may make a single mobile element insufficient. Using multiple mobile elements scheme can overcome this problem.

2. PROBLEM FORMULATION AND NETWORK MODEL

2.1 Network Model

The network model and assumptions of our research are described as follows,
A set of sensors are randomly deployed in a two-dimensional sensing area. These sensors form a disconnected network. The buffer size of each sensor is constant.

Each sub-network has a sensor node, called rendezvous node, which collects and buffers the sensing data from other nodes. Each sensor node has different sampling rate to sense data and has to deliver sensing data to the rendezvous node in its sub-network.

A message ferry visits each rendezvous node to collect data. The moving speed of the message ferry is constant. The message ferry works as a mobile sink and has infinite memory. When the message ferry visits a rendezvous node, the buffer of the rendezvous node will refresh to empty. Message ferry and sensor nodes have the same transmission range.

The data transmitting time from a rendezvous node to the message ferry is ignored.

Without loss of generality, we assume that there is only one sensor node in each sub-network. Thus, the terms, rendezvous node and sensor node, are used interchangeably in the following sections.

2.2 Problem Formulation

We formulate the problem as follows. Let \(N = \{n_1, n_2, \ldots, n_m\} \) be a set of \(m \) sensors in a two-dimensional sensing field, and let \(d_{ij} \) be the distance between nodes \(n_i \) and \(n_j \).

The message ferry visits each sensor node at a constant speed to collect sensing data. We want to find a visit sequence for the message ferry such that the buffer of each sensor does not overflow between two visits. A complete sequence is defined as the visit sequence of message ferry which visits every sensor node at least once and returns to the start sensor node. That is, a sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_k}, k \geq m \), is said to be a complete sequence if \(n_{i_k} = n_{i_1} \) and \(\bigcup_{j=1}^{k} \{n_j\} = N \). The message ferry can repeat this complete sequence again and again if the sequence is feasible. Thus, any sensor node \(n_j \) in the sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_{k-1}}, n_{i_1} \) can act as start node and the resulting sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_{k-1}}, n_{i_1} \) is equivalent to the sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_{k-1}}, n_{i_1} \). Next, we define the travel time \(t_{i_j} \) of message ferry between two visits for node \(n_{i_j} \) with respect to the complete sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_{k-1}}, n_{i_1} \) as follows.

1. If \(n_{i_j} \neq n_{i_1}, j = 2, \ldots, k - 1 \), then
 \[
 t_{i_j} = \frac{\sum_{j=2}^{k-2} d_{i_ji_{j+1}} + d_{i_{k-1}i_1}}{s}
 \]
 where \(s \) is the speed of message ferry.

2. If \(n_{i_j} \) in the complete sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_{k-1}}, n_{i_1} \), repeats \(p + 2 \), \((p \geq 1) \) times, say \(n_{i_{b_1}} = \ldots = n_{i_{b_p}} = n_{i_1} \), then
 \[
 t_{i_j} = \max \left\{ \frac{\sum_{j=1}^{b_1-1} d_{i_ji_{j+1}}}{s}, \frac{\sum_{j=b_1}^{b_2-1} d_{i_ji_{j+1}}}{s}, \ldots, \frac{\sum_{j=b_{p-2}}^{k-2} d_{i_ji_{j+1}} + d_{i_{k-1}i_1}}{s} \right\}
 \]

In this case, we say the complete sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_{k-1}}, n_{i_1} \) is partitioned into \(p \) sub-sequences on the node \(n_{i_j} \).

Formally, we define the message ferry routing problem as follows. We are given a
set of sensor nodes $N = \{n_1, n_2, \ldots, n_m\}$ and the distance between every pair of m sensors in form of an $m \times m$ matrix $[d_{ij}]$, where $d_{ij} > 0$. Each sensor node n_i has a sensing rate r_i to collect data and a buffer with size b_i to store sensing data. The message ferry visits each sensor node with constant speed s to pick up the sensing data. A complete sequence $n_i, n_{ij}, \ldots, n_k, k \geq m$, is a closed path that visits every sensor at least once. The message ferry routing problem is to find a complete sequence such that the buffer of each sensor does not overflow between two visits. That is, $t_{ij} \leq b_i/r_i$ for every node n_{ij} where t_{ij} is the travel time of message ferry between two visits for node n_{ij} with respect to sequence n_i, n_{ij}, \ldots, n_k.

Consider an example of a sensor network with a set of sensor nodes $N = \{n_1, n_2, \ldots, n_{10}\}$, as shown in Fig. 2 (a), and the distance between every pair of 10 sensors.

![Figure 2](image_url)

Fig. 2. (a) Ten sensors in the sensing field; (b) A least cost visit sequence with one critical node (Node n_1); (c) A feasible complete sequence $n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8, n_9, n_{10}, n_1$.

$$[d_{ij}] = \begin{bmatrix}
- & 1 & 2.3 & 2.5 & 4 & 3 & 3.8 & 3.2 & 3.5 & 1 \\
1 & - & 2 & 2.7 & 4.5 & 3.9 & 4.7 & 4 & 4.5 & 2 \\
2.3 & 2 & - & 1 & 2.9 & 3.3 & 4.2 & 4.1 & 5 & 3.5 \\
2.5 & 2.7 & 1 & - & 2 & 2.3 & 3.3 & 3.5 & 4.5 & 3.5 \\
4 & 4.5 & 2.9 & 2 & - & 2 & 3 & 3.8 & 5 & 5.1 \\
3 & 3.9 & 3.3 & 2.3 & 2 & - & 1 & 1.1 & 1.8 & 3.5 \\
3.8 & 4.7 & 4.2 & 3.3 & 3 & 1 & - & 1 & 2.3 & 3.8 \\
3.2 & 4 & 4.1 & 3.5 & 3.8 & 1.1 & 1 & - & 1 & 2.9 \\
3.5 & 4.5 & 5 & 4.5 & 5 & 1.8 & 2.3 & 1 & - & 3 \\
1 & 2 & 3.5 & 3.5 & 5.1 & 3.5 & 3.8 & 2.9 & 3 & -
\end{bmatrix}$$
The sensing rate \((r_1, \ldots, r_{10}) = (5, 2, 1, 1, 2, 1, 1, 1, 2)\) and the buffer size \(b_i = 74\), \(i = 1, \ldots, 10\). Assume that a message ferry with constant speed \(s = 1\) to collect the sensing data along the visiting sequence \(n_1, n_2, \ldots, n_{10}, n_1\) (see Fig. 2 (b)). Then, the travel time \(t_i\) of message ferry between two visits for node \(n_i\) is
\[
t_i = \frac{1 + 2 + 1 + 2 + 1 + 1 + 1 + 3 + 1}{1} = 15, i = 1, 2, \ldots, 10,
\]
and the amount of data sensed during two visits is \((a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}) = (75, 30, 15, 15, 15, 30, 15, 15, 15, 30)\) where \(a_i = t_i \times r_i\). Note that the visiting sequence \(n_1, n_2, \ldots, n_{10}, n_1\) is infeasible because the amount of data sensed by node \(n_1\) is 75 that is greater than the buffer size 74. We call \(n_1\) a critical node since it is infeasible. Then, we can partition on the critical node \(n_1\) and obtain a new sequence, say \(n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8, n_9, n_{10}, n_1\). If the message ferry visits the sensors along the sequence \(n_1, n_2, n_3, n_4, n_5, n_1, n_6, n_7, n_8, n_9, n_{10}, n_1\) (see Fig. 2 (c)), then the travel time \(t_i\) of message ferry between two visits for node \(n_i\) is
\[
t_i = \frac{1 + 2 + 1 + 2 + 4 + 3 + 1 + 1 + 3 + 1}{1} = 20, i = 2, \ldots, 10,
\]
except
\[
t_1 = \max \left\{ \frac{1 + 2 + 1 + 2 + 4}{1}, \frac{3 + 1 + 1 + 3 + 1}{1} \right\} = 10.
\]
And, the amount of data sensed during two visits for each node is \((a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}) = (50, 40, 20, 20, 40, 20, 20, 20, 40)\). All \(a_i\)s are less than 74 and thus the complete sequence \(n_1, n_2, n_3, n_4, n_5, n_1, n_6, n_7, n_8, n_9, n_{10}, n_1\) is feasible.

3. DETAILS OF THE MFRA ALGORITHM

We propose two Message Ferry Routing Algorithms for data collection in disconnected wireless sensor networks referred as MFRA1 and MFRA2.

3.1 MFRA1

The MFRA1 algorithm includes two phases: finding a least distance visit sequence and partitioning complete sequence. Details of the MFRA1 algorithm are illustrated as follows.

Phase 1: Find a least distance visit sequence

We first solve the Traveling Salesman Problem (TSP) by branch-and-cut algorithm [19] to find a least cost tour (i.e., a least distance visit sequence) for a set \(N\) of sensor nodes with distance matrix \([d_{ij}]\). Then we check buffer size constraint for each sensor node. If all buffer size constraints are satisfied, a solution is found; otherwise, the least distance visit sequence is infeasible and go to phase 2.
Phase 2: Partition complete sequence

Phase 2 of MFRA1 recursively executes the following steps: partition sequence, construct TSP sequence and check the feasibility of the visit sequence.

(1) Partition sequence

If there is an overflow sensor in the initial visit sequence, MFRA1 fixes the overflow by partitioning the initial visit sequence into some sub-sequences such that the ferry visits the overflow node twice in the resulting sequence. That is, given a least distance visit sequence \(n_1, n_2, \ldots, n_k\), if there is a critical node \(n_i\) (an overflow sensor) in this least distance visit sequence \(n_1, n_2, \ldots, n_k\), MFRA1 partitions the nodes \(\{n_1, n_2, \ldots, n_k\}\) into two sub-sets and each sub-set includes the critical node \(n_i\) such as \(\{n_1, n_3\}\), \(\{n_1, n_4, \ldots, n_k\}\), \(\{n_2, n_4, \ldots, n_k\}\), \(\{n_2, n_5, \ldots, n_k\}\), \(\{n_3, n_5, \ldots, n_k\}\), \(\{n_4, n_5, \ldots, n_k\}\), \(\{n_1, n_3, n_5, \ldots, n_k\}\), \(\{n_1, n_4, n_5, \ldots, n_k\}\), \(\{n_1, n_6, n_5, \ldots, n_k\}\), \(\{n_1, n_7, n_5, \ldots, n_k\}\), \(\{n_1, n_8, n_5, \ldots, n_k\}\), \(\{n_1, n_9, n_5, \ldots, n_k\}\), \(\{n_1, n_{10}, n_5, \ldots, n_k\}\), \(\{n_1, n_11, n_5, \ldots, n_k\}\), \(\{n_1, n_12, n_5, \ldots, n_k\}\), \(\{n_1, n_13, n_5, \ldots, n_k\}\), \(\{n_1, n_14, n_5, \ldots, n_k\}\), \(\{n_1, n_15, n_5, \ldots, n_k\}\), \(\{n_1, n_16, n_5, \ldots, n_k\}\), \(\{n_1, n_17, n_5, \ldots, n_k\}\), \(\{n_1, n_18, n_5, \ldots, n_k\}\), \(\{n_1, n_19, n_5, \ldots, n_k\}\), \(\{n_1, n_20, n_5, \ldots, n_k\}\), \(\{n_1, n_21, n_5, \ldots, n_k\}\), \(\{n_1, n_22, n_5, \ldots, n_k\}\), \(\{n_1, n_23, n_5, \ldots, n_k\}\), \(\{n_1, n_24, n_5, \ldots, n_k\}\), \(\{n_1, n_25, n_5, \ldots, n_k\}\), \(\{n_1, n_26, n_5, \ldots, n_k\}\), \(\{n_1, n_27, n_5, \ldots, n_k\}\), and so on.

Similarly, if there is another critical node, say \(n_j\) in a sub-set such as \(\{n_1, n_3, \ldots, n_k\}\), then MFRA1 partitions the nodes \(\{n_1, n_3, \ldots, n_k\}\) into two sub-sets. By the way, MFRA1 repeats the partition process as the same as the above step until no other sub-set can be partitioned.

(2) Construct TSP sequence

MFRA1 constructs TSP sequence of each sub-set which includes critical node.

(3) Check the feasibility of the visit sequence

For each visit sequence \(n_{i_1}, n_{i_2}, \ldots, n_{i_k}\), we compute the travel time \(t_{ij}\) for \(1 \leq j \leq k - 1\). Then, for each node \(n_{i_j}\) we check the feasibility by \(t_{ij} \leq b_j/r_j\). If any visit sequence is feasible, then the solution is found. Otherwise, repeat phase 2 until no other sub-set can be partitioned. In this case, we can claim that there is no feasible solution.

Consider the example in Fig. 3. There is a sensor network with a set of sensor nodes \(N = \{n_1, n_2, \ldots, n_5\}\). The sensing rate \((r_1, \ldots, r_5) = (5, 2, 1, 2, 1)\) and the buffer size \((b_1, b_2, b_3, b_4, b_5) = (44, 44, 44, 44, 44)\). The distance between every pair of 5 sensors

\[
[d_{ij}] = \begin{bmatrix}
0 & 1.5 & 3.4 & 2.6 & 2 \\
1.5 & 0 & 2 & 2.3 & 2.5 \\
3.4 & 2 & 0 & 2 & 3.2 \\
2.6 & 2.3 & 2 & 0 & 1.5 \\
2 & 2.5 & 3.2 & 1.5 & 0
\end{bmatrix}.
\]

Assume that a message ferry with constant speed \(s = 1\) to collect the sensing data. Applying phase 1, we find a least visiting sequence \(n_1, n_2, \ldots, n_5, n_1\) and a critical node \(n_1\) (as shown in Fig. 3, state \(S_1\)). In phase 2, start form critical node \(n_1\) and partition all nodes \(\{n_1, n_2, n_3, n_4, n_5\}\) into two sub-sets \(\{n_1, n_3\}, \{n_1, n_4, n_5\}\), \(\{n_1, n_2, n_3, n_4\}\), \(\{n_1, n_2, n_5\}\), \(\{n_1, n_3, n_5\}\), \(\{n_1, n_4, n_5\}\) (see states \(S_{21}, S_{22}, \ldots, S_{27}\) in Fig. 3). Then, MFRA1 construct TSP sequence of each sub-set, and check the feasibility of the visit sequence.
Fig. 3. An illustrated example of MFRA1.

After executing steps 1 to 3 of phase 2, if there is not feasible solution, then we choose state S_{21} for further partition. Assume that there is another critical node n_5 in $\{n_1, n_3, n_4, n_5\}$, MFRA1 continues to partition the sequence $\{n_1, n_3, n_4, n_5\}$ (see states S_{211}, S_{212}, \ldots, S_{216} in Fig. 3), construct the TSP sequence, and check the feasibility of the sequence.

After executing above steps, if there is another critical node n_3 in sequence $\{n_1, n_3, n_5\}$ in state S_{211}, MFRA1 continues to partition the sequence $\{n_1, n_3, n_5\}$, construct the TSP sequence, and check the feasibility of the sequence.
Fig. 4 is the solution space for this illustrated example. Level 1 of Fig. 4 is the initial complete sequence. If all buffer size constraints are satisfied in level 1, then the solution is found. Otherwise, the least distance visit sequence is infeasible and search level 2 states. If all buffer size constraints are satisfied in any state of level 2, then the solution is found. Otherwise, search level 3 states, and so on. MFRA1 will stop after finding a feasible solution or checking all possible sequences. The following Lemma can help to speed up the search procedure.

Lemma 1 It is infeasible if partitioning critical node i leads node j to overflow and then partitioning node j leads critical node i to overflow in complete sequence k where $1 \leq i, j \leq m$, $i \neq j$, and m is the number of nodes.

Since TSP sequence is the shortest path, no other sequence has a path shorter than the TSP sequence. Therefore, it is infeasible if partitioning critical node i leads node j to overflow and then partitioning node j leads critical node i to overflow in complete sequence k.

3.2 MFRA2

The MFRA1 algorithm can find the solution if the feasible solution exists. However, the MFRA1 is an exhaustive search and the computational time is untraceable. Thus, we
JHY-HUEI CHANG AND RONG-HONG JAN

propose a heuristic algorithm, called MFRA2 which can find a solution more quickly. Details of the MFRA2 algorithm are illustrated as follows.

Phase 1: Find a least distance visit sequence

Phase 1 of MFRA2 is the same as phase 1 of MFRA1.

Phase 2: Partition complete sequence

Start from a critical node, says \(n_i \), partition the initial complete sequence \(n_1, n_2, \ldots, n_m \) into sub-sequences in anti-clockwise direction, and check the feasibility of each sensor node. Note that MFRA2 only generates \(m - 2 \) sequences \(n_1 n_2 n_3 \ldots n_m n_1, n_1 n_2 n_3 \ldots n_m n_2, \ldots, n_1 n_2 n_3 \ldots n_m n_1 \) in the level one and check their feasibility. As shown in Fig. 5, a complete sequence \(n_1 n_2 n_3 n_4 n_5 n_1 \) with one critical node \(n_3 \) is partitioned into 3 sequences: \(n_1 n_2 n_3 n_4 n_5 n_1, n_1 n_2 n_3 n_4 n_5 n_1 \) and \(n_1 n_2 n_3 n_4 n_5 n_1 \).

If all of the 3 sequences are infeasible, we choose one of them for further partition. For example, the sequence \(n_1 n_2 n_3 n_4 n_5 n_1 \) with critical node \(n_3 \) in sub-sequence \(n_1 n_2 n_3 n_4 n_5 n_1 \) is partitioned into two sequences \(n_1 n_2 n_3 n_4 n_5 n_1 \) and \(n_1 n_2 n_3 n_4 n_5 n_1 \) (see Fig. 5).

An example of the solution space of MFRA2 is shown in Fig. 6. Level 1 of Fig. 6 is the initial complete sequence. If all buffer size constraints are satisfied in level 1, the solution is found. Otherwise, the initial complete sequence is infeasible and search level 2 states. If all buffer size constraints are satisfied in any state of level 2, the solution is found. Otherwise, search level 3 states, and so on. MFRA2 will stop after finding a feasible solution or checking all generated sequences.
4. SIMULATION RESULTS

4.1 Performance Metrics and Environment Setup

This section presents the performance analysis of MFRA1 and MFRA2 algorithms. The environment setup of simulation is described as follows. There are different kinds of sensors such as surveillance sensors and data sensors in a two dimensional sensing area. The surveillance sensor has a high sampling rate to capture video message. Data sensor has a low sampling rate to collect temperature or noise data.

We study the following performance metrics.

1. The travel time: The travel time of message ferry is defined as the time that message ferry goes through every node in the complete sequence.
2. Number of sequences checked: The number of sequences checked is the number of sequences generated and feasibilities checked by the MFRA1 (or MFRA2) algorithm.
3. The amount of data lost: For a complete sequence (found by MFRA1, MFRA2, Greedy algorithm, Nearest Neighbor, Lin Kernighan [20] or PBS [18]), we calculate the amount of data lost if the message ferry collects the data along this complete sequence. The greedy algorithm finds a Hamiltonian cycle as a complete sequence greedily. The nearest neighbor algorithm constructs a Hamiltonian cycle as a complete sequence by starting at a node n_0, choosing the nearest neighbor node as next node and so on, and finally returning to n_0.

![Diagram of Solution Space](image)

Fig. 6. The solution space of MFRA2.
4.2 Numerical Results

(1) The travel time

There are two set of sensors, \((N = 5 \text{ and } N = 10)\), in a 10 km \(\times\) 10 km two-dimensional sensing field. The speed of the message ferry is 36 km/hr. The travel time vs. the number of critical nodes for MFRA1 and MFRA2 is shown in Fig. 7. Overall, the travel time increases when the number of critical nodes increases. This is because MFRA1 and MFRA2 continue to partition a sequence and the number of nodes in the resulting sequence increases.

(2) Number of sequences checked

As shown in Fig. 8, the number of checked sequences of MFRA1 is much larger than MFRA2. This is because MFRA1 checks all sequences to find feasible solutions. MFRA1 algorithm can find the solution if the feasible solution exists. However, the MFRA1 is an exhaustive search and it may consume lots of computation time. The MFRA2 is a heuristic algorithm and it can find a solution more quickly. But, the MFRA2 may not find the solution whenever the solution exists. This is because MFRA2 does not check all sequences. Fig. 9 shows the ratio of the solution found for MFRA1 and MFRA2. As shows in Fig. 9, the ratio of the solutions found of MFRA1 is nearly the same as MFRA2. Therefore, MFRA2 is an efficient algorithm.

(3) The amount of data lost

As shown in Fig. 10, the amount of data lost of MFRA1 and MFRA2 algorithms is much smaller than Greedy, Nearest Neighbor and Lin Kernighan algorithms. Greedy, Nearest Neighbor and Lin Kernighan algorithms will lose data when a sensor overflows. However, MFRA1 and MFRA2 work well without losing data. Fig. 11 shows the amount of data lost for different buffer sizes with 3 critical nodes. Fig. 12 shows the amount of
5. CONCLUSIONS

This paper presents two efficient message ferry routing algorithms for data collection in partitioned wireless sensor networks. If there is a sensor overflow, MFRA1 and MFRA2 perform better than other schemes.
MFRA2 fix the overflow by partitioning the initial visit sequence into some sub-sequences to find feasible solutions. The partition phase of our scheme is the key difference compared to the previous schemes. It can achieve a better performance than other previous schemes. MFRA1 and MFRA2 algorithms are efficient and novel for data collection in partitioned wireless ad hoc sensor networks.

REFERENCES

Jyh-Huei Chang (張志輝) received his M.S. degree in Computer Science from National Chiao Tung University, Taiwan in 2002. He is currently working toward the Ph.D. degree in Computer Science at National Chiao Tung University, Taiwan. He is a Ph.D. candidate now. His research interests include wireless networks, wireless sensor networks and mobile computing.

Rong-Hong Jan (簡榮宏) received the B.S. and M.S. degrees in Industrial Engineering and the Ph.D. degree in Computer science from National Tsing Hua University, Taiwan, in 1979, 1983, and 1987, respectively. He joined the Department of Computer and Information Science, National Chiao Tung University, in 1987, where he is currently a professor. From 1991-1992, he was a visiting associate professor in the Department of Computer Science, University of Maryland, College Park, Maryland. His research interests include wireless networks, mobile computing, distributed systems, network reliability, and operations research.