The g-good-neighbor conditional diagnosability of hypercube under PMC model

Shao-Lun Peng, Cheng-Kuan Lin, Jimmy J.M. Tan, Lih-Hsing Hsu

Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan, ROC

Abstract
Processor fault diagnosis plays an important role in multiprocessor systems for reliable computing, and the diagnosability of many well-known networks has been explored. For example, hypercubes, crossed cubes, Möbius cubes, and twisted cubes of dimension n all have diagnosability n. The conditional diagnosability of n-dimensional hypercube Q_n is proved to be $4(n - 2) + 1$ under the PMC model. In this paper, we study the g-good-neighbor conditional diagnosability of Q_n under the PMC model and show that it is $2^g(n - g) + 2^g - 1$ for $0 \leq g \leq n - 3$. The g-good-neighbor conditional diagnosability of Q_n is several times larger than the classical diagnosability.

1. Introduction

With the rapid development of technology, the need for high-performance large multiprocessor systems has been continuously increasing day by day. Since all the processors run in parallel, the reliability of each processor in multiprocessor systems becomes an important issue for parallel computing. In order to maintain the reliability of such multiprocessor systems, whenever a processor (node or vertex) is found faulty, it should be replaced by a fault-free processor.

Fault-tolerant computing for the hypercube has been of interest to many researchers. The process of identifying faulty vertices is called the diagnosis of the system. System diagnosis can be done in two different approaches, that is, circuit-level diagnosis and system-level diagnosis. In circuit-level diagnosis, the processors must be tested one after one by the human labor, which induces diagnosis complicated and possibly inaccurate. On the other hand, system-level diagnosis could be done automatically by the system itself. Thus, system-level diagnosis appears to be an alternative to circuit-level testing in a large multiprocessor system. Many terms for system-level diagnosis have been defined and various models have been proposed in the literature [2,7,16,20]. If all allowable fault sets can be diagnosed correctly and completely based on a single syndrome, then the diagnosis is referred to as one-step diagnosis or diagnosis without repairs.

We use the widely adopted PMC model [20] as the fault diagnosis model. In [9], Hakimi and Amin proved that a multiprocessor system is t-diagnosable if it is t-connected with at least $2t + 1$ vertices. Besides, they gave a necessary and sufficient condition for verifying if a system is t-diagnosable under the PMC model. Recently, Mánik and Gramatová [17,18] propose a...
In classical measures of system-level diagnosability for multiprocessor systems, it has generally been assumed that any subset of processors can potentially fail at the same time. If there is a vertex v whose neighboring vertices are faulty simultaneously, there is no way of knowing the faulty or fault-free status of v. As a consequence, the diagnosability of a system is upper bounded by its minimum degree. Motivated by the deficiency of the classical measurement of diagnosability, Lai et al. [13] introduced a measure of conditional diagnosability by claiming the property that any faulty set cannot contain all neighbors of any processor. Under this condition, they showed that the conditional diagnosability of the n-dimensional hypercube Q_n is $4(n - 2) + 1$. We are then led to the following question: how large the maximum value t can be such that a graph G remains t-diagnosable under the condition that every vertex v has at least g fault-free neighboring vertices. More precisely, we assume the faulty set F satisfies the condition that each vertex v in $G - F$ has at least g good neighbors. We notice that, considering the situation that all the neighbors of each vertex cannot fail simultaneously, many properties of the network would be much better, including the connectivity and diagnosability. The aim of this paper is to study more of these better properties.

In this paper, we extend the concept of conditional diagnosability and propose a new measure of diagnosability. We define g-good-neighbor conditional diagnosability as the maximum number of faulty vertices that the system can guarantee to identify under the condition that every fault-free vertex has at least g fault-free neighbors. In this paper, we show that the g-good-neighbor conditional diagnosability of Q_n is $2^t(n - g) + 2^g - 1$ under the PMC model, which is several times larger than the classical diagnosability of Q_n depending on the condition g.

The rest of this paper is organized as follows: Section 2 provides terminology and preliminaries for diagnosing a system. In Section 3, we show the proof of the g-good-neighbor conditional diagnosability of Q_n. Finally, our conclusions are given in Section 4.

2. Preliminaries

2.1. Notations

A multiprocessor system or a network is usually represented as an undirected graph where vertices represent processors and edges represent communication links. Throughout this paper, we follow [11,22] for the graph definitions and notations, and we focus on the undirected graph without loops (simply abbreviated as graph).

Let $G = (V,E)$ be a graph where V is a finite set and E is a subset of $\{(u,v)|(u,v)$ is an unordered pair of $V\}$. We say that V is the vertex set and E is the edge set. We use $n(G) = |V|$ to denote the cardinality of V. The degree of a vertex v in G, written as $deg_G(v)$ or $deg(v)$, is the number of edges incident to v. The graph G is k-regular if every vertex has degree k. The neighborhood of a vertex v in G, written $N_G(v)$ or $N(v)$, is the set of vertices adjacent to v. We use $N(A) = \{x | y \in A, x \in G - A, (x,y) \in E(G)\}$ to denote the neighborhood of a vertex subset A of G. Two vertices u and v are adjacent in G if $(u,v) \in E$. A graph G is connected if for any two vertices, there is a path joining them, otherwise it is disconnected. For a set S of V, the notation $G - S$ represents the graph obtained by removing the vertices in S from G and deleting those edges with at least one end vertex in S. If $G - S$ is disconnected, then S is called a separating set (or a vertex cut). A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A component of a graph G is its maximal connected subgraph. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or only one vertex left. A graph G is k-connected if its connectivity is at least k.

2.2. Diagnosability

Under the classical PMC model [20], adjacent processors are capable of performing tests on each other. For two adjacent vertices u and v in V, the ordered pair (u,v) represents the test performed by u on v. In this situation, u is called the tester and v is called the tested vertex. The outcome of a test (u,v) is either 1 or 0 with the assumption that the testing result is regarded as reliable if the tester u is fault-free. However, the outcome of a test (u,v) is unreliable, provided that the tester u itself is originally a faulty processor. Suppose that the tester u is fault-free, then the result would be 0 (respectively, 1) if v is fault-free (respectively, faulty). For each pair of adjacent vertices (u,v), u and v can perform the test to each other.

A test assignment T for a system G is a collection of tests for every adjacent pairs of vertices. It can be modeled as a directed testing graph $T = (V,L)$ where $(u,v) \in L$ implies that u and v are adjacent in G. Throughout this paper, we assume that each vertex tests the other whenever there is an edge between them and all these tests are gathered in the test assignment. The collection of all test results for a test assignment T is called a syndrome. Formally, a syndrome is a function $\sigma : L \rightarrow \{0,1\}$.
The set of all faulty processors in the system is called a faulty set. This can be any subset of \(V \). The process of identifying all the faulty vertices is called the diagnosis of the system. The maximum number of faulty vertices that the system \(G \) can guarantee to identify is called the diagnosability of \(G \), written as \(\delta(G) \). For a given syndrome \(\sigma \), a subset of vertices \(F \subseteq V \) is said to be consistent with \(\sigma \) if syndrome \(\sigma \) can be produced from the situation that, for any \((u, v) \in L\) such that \(u \in V - F \), \(\sigma(u, v) = 1 \) if and only if \(v \in F \). Because a faulty tester can lead to an unreliable result, a given set \(F \) of faulty vertices may produce different syndromes. We use notation \(\sigma(F) \) to represent the set of all syndromes which could be produced if \(F \) is the set of faulty vertices. Two distinct sets \(F_1 \) and \(F_2 \) in \(V \) are said to be indistinguishable if \(\sigma(F_1) \cap \sigma(F_2) \neq \emptyset \), otherwise, \(F_1 \) and \(F_2 \) are said to be distinguishable. Besides, we say \((F_1, F_2)\) is an indistinguishable pair if \(\sigma(F_1) \cap \sigma(F_2) \neq \emptyset \), else \((F_1, F_2)\) is a distinguishable pair.

A system of \(n \) units is \(t \)-diagnosable if all faulty units can be identified without replacement, provided that the number of faults presented does not exceed \(t \). Let \(F_1 \) and \(F_2 \) be two distinct subsets of \(V \), and let the symmetric difference \(F_1 \Delta F_2 = (F_1 - F_2) \cup (F_2 - F_1) \). Dahbura and Masson [3] proposed a polynomial time algorithm to check whether a system is \(t \)-diagnosable.

Theorem 1 [3]. A system \(G = (V, E) \) is \(t \)-diagnosable if and only if, for any two distinct subsets \(F_1 \) and \(F_2 \) of \(V \) with \(|F_1| \leq t \) and \(|F_2| \leq t \), there is at least one test from \(V - (F_1 \cup F_2) \) to \(F_1 \Delta F_2 \).

Let \(G(V, E) \) be an undirected graph of a system \(G \). The following result follows directly from Theorem 1.

Theorem 2. For any two distinct subsets \(F_1 \) and \(F_2 \) of \(V \), \((F_1, F_2) \) is a distinguishable-pair under PMC model if and only if there is a vertex \(u \in V - (F_1 \cup F_2) \) and there is another vertex \(v \in F_1 \Delta F_2 \) such that \((u, v) \in E \). (see Fig. 1)

In an \(n \)-dimensional hypercube, \(Q_n \) has \(\binom{2^n}{n} \) vertex subsets of size \(n \), among which there are only \(2^n \) vertex subsets which contains all the neighbors of some vertex. Since the ratio \(2^n/\binom{2^n}{n} \) is very small for large \(n \), the probability of a faulty set with size \(n \) containing all the neighbors of any vertex is very low. For this reason, Lai et al. [13] introduced a new restricted diagnosability of multiprocessor systems called conditional diagnosability. They consider the situation that any faulty set cannot contain all the neighbors of any vertex in a system.

Motivated by this concept [13], we extend this idea about conditional diagnosis. In this paper, we introduce \(g \)-good-neighbor condition by claiming that for every fault-free vertex in a system, it has at least \(g \) good-neighbor faulty vertices. The faulty vertices is called the diagnosis of the system. The maximum number of faulty vertices that the system \(G \) can guar-

Lemma 1. For any given graph \(G \), \(t_g(G) \leq t_{g'}(G) \) if \(g \leq g' \).

3. The \(g \)-good-neighbor conditional diagnosability of hypercube

3.1. The \(n \)-dimensional hypercube

An \(n \)-dimensional hypercube, \(Q_n \), is an undirected \(n \)-regular graph containing \(2^n \) vertices and \(n2^{n-1} \) edges. Let \(u = u_{n-1}u_{n-2} \ldots u_1u_0 \) be an \(n \)-bit binary string. The hypercube \(Q_n \) consists of all \(n \)-bit binary strings as its vertices. Two vertices \(u \) and \(v \) are adjacent if their binary string representations differ in exactly one bit position. For \(0 \leq i \leq n - 1 \), we use \(u^i \) to denote the \(i \)th neighbor of \(u \), i.e., the binary string \(v_{n-1}v_{n-2} \ldots v_1v_0 \) where \(v_i = 1 - u_i \) and \(v_k = u_k \) if \(k \neq i \).

The Hamming weight of \(u \), denoted by \(w(u) \), is the number of 1 such that \(u_i = 1 \). The hypercube \(Q_n \) is a bipartite graph with bipartition \(\{u|w(u) \text{ is odd}\} \) and \(\{u|w(u) \text{ is even}\} \). We use black vertices to denote those vertices of odd weight and white vertices to denote those vertices of even weight. For \(i \in \{0, 1\} \), we set \(Q_n^i \) to be the subgraph of \(Q_n \) which is induced by

![Fig. 1. Illustration of a distinguishable pair \((F_1, F_2)\).](image-url)
\{u \in V(Q_n)|u_{n-1} = i\}. The n-dimension hypercube \(Q_n\) is consisted of two \(Q_{n-1}\), and \(Q^1_n\) is isomorphic to \(Q_{n-1}\) for \(i = 0, 1\). It is well known that \(Q_n\) is vertex transitive and edge transitive [8,15]. Furthermore, the permutation on the coordinate of \(Q_n\) and the componentwise complement operations are graph isomorphisms.

3.2. \(t_g(Q_n) \leq 2^g(n-g) + 2^g - 1\) if \(g \leq n - 3\)

Let \(g\) be a positive integer with \(g \leq n - 3\). To find the \(g\)-good-neighbor conditional diagnosability of the hypercube \(Q_n\), we first give an example to show that \(t_g(Q_n)\) is no more than \(2^g(n-g) + 2^g - 1\). We are going to show that there exist two \(g\)-good-neighbor conditional faulty sets \(F_1\) and \(F_2\) of \(V(Q_n)\) with \(|F_1| \leq 2^g(n-g) + 2^g\) and \(|F_2| \leq 2^g(n-g) + 2^g\), but \(F_1\) and \(F_2\) are indistinguishable. Thus, we know \(Q_n\) is not \(g\)-good-neighbor conditional \((2^g(n-g) + 2^g)\)-diagnosable.

We set \(A = \{y_i = y_{i,1}y_{i,2} \ldots y_{i,n-2}y_{i,n-1}|y_{i,j} = 0\text{ for } j \in \{g, g+1, \ldots, n-1\}\text{ and } y_{i,j} \in \{0, 1\}\text{ for } j \in \{0, 1, \ldots, g-1\}\}\) and \(V_k = \{y^{n-k}|y \in A\}\) for every \(1 \leq k \leq n-g\). Then we set \(F_1 = \bigcup_{i=1}^{2^n-1}V_i\) and \(F_2 = A \cup F_1\). Since \(|A| = 2^g\) and \(|V_i| = 2^g\) for every \(1 \leq i \leq n-g\), we obtain that \(|F_1| = 2^g(n-g)\) and \(|F_2| = 2^g + 2^g(n-g)\). By Theorem 2, we conclude that \((F_1, F_2)\) is an indistinguishable pair because \(A \Delta F_2\) and \(N(A) = F_1\). See Fig. 2.

Now we verify that both \(F_1\) and \(F_2\) are \(g\)-good-neighbor conditional faulty sets. Let \(X\) be the set \(V(Q_n) - (F_1 \cup F_2)\). Since \(F_1\) is the subset of \(F_2\), \(X = V(Q_n) - F_2\). Therefore, it is sufficient to verify both \(P_g(A)\) and \(P_g(X)\) are satisfied. For every vertex \(u\) in \(A\), it is easy to see that \(u \in A\) for every \(i \in \{0, 1, \ldots, g-1\}\). Thus, \(P_g(A)\) holds. Now we consider the vertices in \(X\). By the definition of \(X\), we know that for every \(x\) in \(X\), \(x \in X\) for every \(0 \leq i \leq g - 1\). Thus, the property \(P_g(X)\) also holds. Therefore, both \(F_1\) and \(F_2\) are \(g\)-good-neighbor conditional faulty sets of \(Q_n\).

Since \((F_1, F_2)\) is an indistinguishable pair with \(|F_1| = 2^g(n-g)\) and \(|F_2| = 2^g(n-g) + 2^g\), we conclude that the \(g\)-good-neighbor conditional diagnosability of \(Q_n\) is less than \(2^g(n-g) + 2^g\). The following lemma states the fact.

Lemma 2. For \(0 \leq g \leq n - 3\), \(t_g(Q_n) \leq 2^g(n-g) + 2^g - 1\).

3.3. \(t_g(Q_n) \leq 2^{n-1} - 1\) if \(n - 2 \leq g \leq n - 1\)

We set \(F_1 = V(Q^0_n)\) and \(F_2 = V(Q^1_n)\). Since \(Q^0_n = Q_n - F_2\) and \(Q^1_n = Q_n - F_1\), both \(F_1\) and \(F_2\) are \((n-1)\)-good-neighbor conditional faulty sets. If a faulty set is a \(g\)-good-neighbor conditional faulty set, it is a \((g-1)\)-good-neighbor conditional faulty set. Thus, both \(F_1\) and \(F_2\) are \((n-2)\)-good-neighbor conditional faulty sets. Since \(F_1 \cup F_2 = V(Q_n)\), by Theorem 2, \((F_1, F_2)\) is an indistinguishable pair under PMC model. We have the following lemma.

Lemma 3. For \(n - 2 \leq g \leq n - 1\), \(t_g(Q_n) \leq 2^{n-1} - 1\).

3.4. The \(g\)-good-neighbor conditional diagnosability of \(Q_n\)

Before discussing the \(g\)-good-neighbor conditional diagnosability of hypercube, we have some useful observations as follows:

![Fig. 2. Illustration of \(F_1\) and \(F_2\).](image-url)
Theorem 3 [19]. Let \(n \geq 3 \) and \(1 < p \leq n \). Suppose that \(F \) is a minimum cardinality cut of \(Q_n \) such that \(|N_0(x) \cap F| \leq p \) for all \(x \in V(Q_n) - F \). Then \(|F| = p2^{n-p} \).

In the above theorem, we note that \(F \) is a \(g \)-good-neighbor conditional faulty set if \(p = n - g \). The condition \(1 < p \leq n \) is equivalent to \(1 < n - g \leq n \), so \(g \leq n - 2 \). We restate the above theorem in our terms.

Theorem 5 [19]. Let \(n \geq 3 \) and \(0 \leq g \leq n - 2 \). Suppose that \(F \) is a minimum cardinality cut of \(Q_n \) such that \(|N_0(x) - F| \geq g \) for all \(x \in V(Q_n) - F \). Then \(|F| = 2^g(n-g) \).

Theorem 6. For \(0 \leq g \leq n - 3 \), \(t_g(Q_n) \geq 2^g(n-g) + 2^g - 1 \).

Proof. To prove \(Q_n \) is \(g \)-good-neighbor conditional \((2^g(n-g)+2^g-1) \)-diagnosable, it is equivalent to prove that \(F_1 \) and \(F_2 \) must be distinguishable for every two \(g \)-good-neighbor conditional faulty sets \(F_1 \) and \(F_2 \) of \(Q_n \), provided that both the cardinality of \(F_1 \) and cardinality of \(F_2 \) are no more than \(2^g(n-g) + 2^g - 1 \).

We prove this theorem by contradiction. Suppose that there are two distinct \(g \)-good-neighbor conditional faulty sets \(F_1 \) and \(F_2 \), which are indistinguishable with \(|F_1| \leq 2^g(n-g) + 2^g - 1 \) and \(|F_2| \leq 2^g(n-g) + 2^g - 1 \). Now we consider all the possible cases such that \(F_1 \) and \(F_2 \) are indistinguishable. By Theorem 2, there are two cases such that \(F_1 \) and \(F_2 \) are indistinguishable: \(V(Q_n) = F_1 \cup F_2 \) or \(V(Q_n) \neq (F_1 \cup F_2) \) but there is no test from \(V(Q_n) - (F_1 \cup F_2) \) to \(F_1 \Delta F_2 \). Without loss of generality, we assume that \(F_2 - F_1 \neq \emptyset \). We show that each case has contradiction with our assumption.

Case 1. \(V(Q_n) = F_1 \cup F_2 \). Since \(g \leq n - 3 \) and all the vertices of \(Q_n \) are in \(F_1 \cup F_2 \), we obtain the following equation with contradiction:

\[
2^n = |V(Q_n)| = |F_1| + |F_2| - |F_1 \cap F_2| \leq |F_1| + |F_2| \leq 2(2^g(n-g) + 2^g - 1) \leq 2(2^{n-3}(n-(n-3)+1)) - 2 = 2^n - 2,
\]

which is a contradiction.

Case 2. \(V(Q_n) \neq (F_1 \cup F_2) \). In this case, we show \(|F_2| \geq 2^g(n-g)2^g \), which is a contradiction with our assumption, regardless \(F_1 \subset F_2 \) or not. Since \(F_1 \) and \(F_2 \) are indistinguishable, there are no edges between \(V(Q_n) - (F_1 \cup F_2) \) and \(F_1 \Delta F_2 \). By the assumption that \(F_2 - F_1 \neq \emptyset \) and \(F_1 \) is a \(g \)-good-neighbor conditional faulty set, any vertex in \(F_2 - F_1 \) has at least \(g \) good neighbors in subgraph \(F_2 - F_1 \). By Theorem 5, the size of \(F_2 - F_1 \) is characterized, and thus we have \(|F_2 - F_1| \geq 2^g \). Since \(F_1 \) and \(F_2 \) are both \(g \)-good-neighbor conditional faulty sets, \(F_1 \cap F_2 \) is also a \(g \)-good-neighbor conditional faulty set. By Theorem 4 and \(g \leq n - 3 \), the minimum cardinality cut of \(Q_n \) with \(g \)-good-neighbor condition is \((n-g)2^g \). Thus, we obtain that \(|F_2 \cap F_1| \geq (n-g)2^g \). As a result, \(|F_2| = |F_2 - F_1| + |F_2 \cap F_1| \geq 2^g + (n-g)2^g \) which contradicts with that \(|F_2| \leq 2^g + (n-g)2^g - 1 \).

Based on these two cases above, we conclude that \(t_g(Q_n) \geq 2^g(n-g) + 2^g - 1 \) if \(0 \leq g \leq n - 3 \). This completes the proof of this theorem. \(\square \)

| \(n \) | \(g \) | \(|V(Q_n)| \) | \(t_g(Q_n) \) | Ratio |
|---|---|---|---|---|
| 3 | 0 | 8 | 3 | 0.375 |
| 4 | 0 | 16 | 4 | 0.25 |
| 4 | 1 | 16 | 7 | 0.4375 |
| 5 | 0 | 32 | 5 | 0.15625 |
| 5 | 1 | 32 | 9 | 0.28125 |
| 5 | 2 | 32 | 15 | 0.46875 |
| 6 | 0 | 64 | 6 | 0.09375 |
| 6 | 1 | 64 | 11 | 0.171875 |
| 6 | 2 | 64 | 19 | 0.296875 |
| 6 | 3 | 64 | 31 | 0.484375 |
| 7 | 0 | 128 | 7 | 0.0546875 |
| 7 | 1 | 128 | 13 | 0.1015625 |
| 7 | 2 | 128 | 23 | 0.1796875 |
| 7 | 3 | 128 | 39 | 0.3046875 |
| 7 | 4 | 128 | 63 | 0.4921875 |
The g-good-neighbor conditional diagnosability of hypercube $t_g(Q_n)$ shows below.

Theorem 7. The g-good-neighbor conditional diagnosability of Q_n is

$$t_g(Q_n) = \begin{cases} 2^g(n - g) + 2^h - 1 & \text{if } 0 \leq g \leq n - 3, \\ 2^{n-1} - 1 & \text{if } n - 2 \leq g \leq n - 1. \end{cases}$$

Proof. To prove this theorem, we consider that $0 \leq g \leq n - 3$ first. By Lemma 2 and Theorem 6, we have $t_g(Q_n) \leq 2^g(n - g) + 2^h - 1$ if $0 \leq g \leq n - 3$.

Suppose that $n - 2 \leq g \leq n - 1$. By Lemma 2, $t_g(Q_n) \leq 2^{n-1} - 1$ if $n - 2 \leq g \leq n - 1$. Since $2^g(n - h) + 2^h - 1 = 2^{n-1} - 1$ if $h = n - 3$, by Lemma 1, $t_g(Q_n) \geq 2^{n-1} - 1$ if $n - 2 \leq g \leq n - 1$. Thus, the g-good-neighbor conditional diagnosability $t_g(Q_n) = 2^{n-1} - 1$ if $n - 2 \leq g \leq n - 1$.

This completes the proof of this theorem. □

Table 1 shows the g-good-neighbor conditional diagnosability of n-dimensional hypercube $t_g(Q_n)$ of small n where $0 \leq g \leq n - 3$.

4. Conclusions

In probabilistic models of multiprocessor systems, processors fail independently, but with different probabilities. The probability that all faulty processors are neighbors of one processor is very small. In this paper, we propose the concept of g-good-neighbor conditional diagnosis with any fault-free vertex has at least g neighboring fault-free vertices. To grant more accurate measurement of diagnosability for a large-scale processing system, we introduce the g-good-neighbor conditional diagnosability of a system under the PMC model. The g-good-neighbor conditional diagnosability of the hypercube Q_n is demonstrated to be $2^g(n - g) + 2^h - 1$.

Observing that when $g = 0$, there is no restriction on the faulty sets and we have the traditional diagnosability on the hypercube as n. In addition, in the special case of $g = 1$, our result is slightly different from the measure of diagnosability given by Lai et al. [13]. The difference between these two measures is that we only consider the condition of the fault-free vertices in the network. A thorough investigation of the diagnosability with the requirement of having at least g good neighbors for all vertices would be an interesting problem to study in the future.

In the area of diagnosability, the comparison model is another well-known and widely chosen fault diagnosis model. Hence, for further discussion, it is worthy to determining the g-good-neighbor conditional diagnosability of a system under comparison model.

The classical diagnosability of a system is small owing to the assumption that all neighbors of each processor can potentially fail at the same time regardless of the probability. If there are exactly n faulty processors in a system of minimum degree n, however, the probability of the faulty set containing all the neighbors of any vertex is statistically low for large multiprocessor systems. Therefore, it is an attractive work to develop more different measures of g-good-neighbor conditional diagnosability based on application environment, network topology, network reliability, and statistics related to fault patterns.

References