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Abstract

High mobility channel materials such as Ge and compound semiconductors (CS) show promise for future generation
MOSFETs. The challenge is to integrate these materials with a Si substrate and create good interfaces in the devices. Here
we show dislocation-free CSOI and Ge-on-insulator (GOI) devices with good characteristics. The InAlAs/InGaAs/InAlAs-
OI on Si MESFETs shows a mobility of 8100cm?/V's. To reduce the leakage current an Al,O3/InGaAs MOSFET was
fabricated. Good 451 cm?/V's mobility was obtained, higher than the 340cm?/Vs of GOI MOSFETs. However the
marginally better mobility than GOI and 18X lower mobility than MESFETSs indicate that the soft phonon scattering,
high-x interface scattering and process variations are challenges for CS MOSFETs. In contrast, the GOI CMOS provides a
simpler process and significantly higher electron and hole mobilities than its Si counterparts.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

To continue current VLSI scaling trends, high-x
dielectrics and metal-gates [1-7] have to be inte-
grated into CMOS to reduce the large leakage
current and DC power consumption. However,
the mobility degradation in metal-gate/high-x/Si
CMOSFETs is a challenge. This mobility degrada-
tion is due to the ionic nature of the high-x
dielectric, which leads to additional soft-phonon
scattering. One method to overcome this problem is
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to use strained-Si [4]; but this compromises the
mobility enhancement, compared with the currently
used poly-Si/SiON/strained-Si. A high mobility
results in high transistor drive current, and is a
key factor for achieving high circuit speeds. Thus it
is desirable to improve the mobility beyond that of
strained-Si devices. One candidate is Ge which
shows significantly higher electron and hole mobi-
lities compared with strained-Si. In this case, a Ge-
on-insulator (GOI) structure is needed to reduce the
transistor’s off-state leakage current which arises
from the small energy band gap of Ge [8-13]. III-V
MOSFETs have the potential of providing even
higher electron mobilities. However, the technology
challenge is to integrate III-V material with Si and


dx.doi.org/10.1016/j.mssp.2006.08.066
mailto:sean.mcalister@nrc.ca

712 A. Chin et al. | Materials Science in Semiconductor Processing 9 (2006) 711-715

form good interfaces in the MOSFET. Here we
show the integration of a I1I-V material on Si, thus
creating a compound semiconductor (CS) on-
insulator (CSOI) device, using a process similar to
that of our previous low-temperature wafer-bonded
GOI [8-13]. The high electron mobility transistor
(HEMT) [14-16] InAlAs/InGaAs/InAlAs-OI on Si
showed a dislocation-free structure and an
8100 cm?/V s electron mobility. For comparison we
fabricated an Al,O3/InGaAs MOSFET, which gave
a significantly lower mobility than the InAlAs/
InGaAs HEMTs. However, the mobility value was
higher than that of GOI devices [9]. The mobility
improvement was limited by soft-phonon and
interface scattering.

2. Experimental procedure

The first goal was to integrate the III-V material
onto Si by forming a wafer-bonded CSOI structure,
as shown in the process of Fig. 1. An inverted
InAlAs/InGaAs/InAlAs HEMT structure was first
grown on InP by molecular beam epitaxy (MBE)
[14-16]. Then a SiO, layer was deposited on top of
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Fig. 1. Schematic of the process used to form the InAlAs/
InGaAs/InAlAs-on-insulator structure.

the InAlAs and the target Si wafer. To enhance the
wafer-bonding at low temperatures an O5~ exposure
was used to activate the SiO, surfaces, and the
bonding was performed at 400 °C [8—12]. Then the
InP substrate was thinned down followed by
selective etching of the InP and InAlAs. InGaAs is
a good etch stop when using an HClI-based solution,
compared with InP and InAlAs. To fabricate a
CSOI HEMT, the top n" InGaAs contact layer
over the gate was recess-ctched to the InAlAs, where
the gate electrode was formed by a Ti/Au Schottky
contact. Then the source—drain contacts were
formed by NiGeAu deposition [16].

A high-x/III-V MOSFET was also investigated in
this study [17]. We used MBE to grow the 20 nm-
InGaAs/300 nm-InAlAs quantum-well (QW) struc-
ture on an InP substrate. Then the Al,O; gate
dielectric was deposited by RF sputtering from an
Al,O; source. To study the Al,O;/InGaAs interface
properties, the InGaAs surface with or without in
situ atomic Al layer coverage was investigated
before exposing the InGaAs to air. The Al-gate/
AlO3/InGaAs/InAlAs MOSFET was fabricated by
gate patterning, self-aligned Al/YDb deposition, and
400 °C rapid thermal annealing (RTA) to form the
Schottky source—drain (SSD) contacts [18-20]. Such
SSD contacts for InGaAs can avoid the difficult
challenge of n™ ion implantation activation for
source—drain contacts, as used in conventional
CMOSFET fabrication.

3. Results and discussion
3.1. InAlAs/InGaAs/InAlAs-Ol transistor

An InAlAs/InGaAs/InAlAs-OI device was exam-
ined by cross-sectional transmission electron micro-
scopy (TEM), as shown in Fig. 2(a), where no
dislocations were seen at the resolution shown—this
is important for high-yield IC fabrication. The white
line in the middle of the SiO, layer is due to the O,-
plasma treatment, which is important for low
temperature (400 °C) wafer-bonding and good
mechanical strength. The CSOI design, which uses
an inverted HEMT layer structure, is shown in Fig.
2(b), and consists of an InAlAs barrier layer, two-
dimensional (2D) planar n ™ Si doping layer, InAlAs
top QW barrier, InGaAs QW channel, and InAlAs
bottom QW barrier on the SiO,/Si substrate.

Fig. 3 shows the I4— V4 characteristics of a 1.1 um
InAlAs/InGaAs/InAlAs CSOI transistor. For com-
parison, data for a 0.35um SiO,/Si MOSFET are
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Fig. 2. Cross-sectional TEM and band diagram of the InAlAs/InGaAs/InAlAs FET structure. The middle InGaAs provides the channel,
confined by InAlAs barriers. The upper InGaAs in the gate region was etched before depositing the metal gate.
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Fig. 3. Comparison of the Iy—Vy characteristics of InAlAs/
Ing 53Gag47As CSOI MESFETs on Si (1.1 pum x 50 um) with
0.35um Si MOSFETs.

included. A high drive current of 0.41 mA/um was
measured, which is close to that for a 0.35 um SiO»/
Si MOSFET. Such a high drive current in the CSOI
HEMT is due to the high electron mobility of
8100cm?/Vs, which was determined using Hall
measurements.  The  carrier  density  was
2.2x10"?ecm ™. The mobility value is nearly an
order of magnitude higher than that for conven-
tional Si and strained-Si devices.

3.2. Metal-gate/high-x Al,O3/InGaAds MOSFET

It is well known that HEMTs or MESFETs
are unsuitable for VLSI circuits due to their large
gate leakage current. Therefore, a high-x/InGaAs
MOSFET structure is preferred over a HEMT
design. Fig. 4 shows the I4— V4 characteristics
of an Al-gate/high-x Al,O3/InGaAs QW MOSFET.
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Fig. 4. I~ V4 characteristics of Al/Al,O3/InGaAs MOSFETSs on
insulating InAlAs/InP, with the InGaAs surface exposed to air.

For comparison, the I;— V4 data from an Al,O;/
GOI device is also shown [9]. Unfortunately, the
drive current of the Al/Al,05/InGaAs nMOSFET is
even less than that of an Al/Al,O3/GOI transistor.
It is known from MBE studies that the native oxides
of InGaO; and As,O3 on InGaAs have weak bond
strengths, requiring desorption temperatures of only
~500°C. Therefore, the poor mobility of the
Al/ALL,O3/InGaAs transistor may be due to these
interfacial native oxides beneath the Al,O; gate
dielectric, as shown in the schematic diagram in
Fig. 5. Such a weakly bonded poor-quality oxide
may give a high concentration of interface states
by forming dangling bonds. This can limit III-V
MOSFET development.

To overcome this problem the top InGaAs
surface was covered by an in situ deposited Al layer
a few atoms thick, which was converted to Al,O3
after air exposure, and during subsequent Al,O;
sputtering under O5 conditions. Fig. 6 shows the
I4— V4 characteristics of Al,O;/InGaAs MOSFETs
with an in situ covered InGaAs surface. Signifi-
cantly improved drain current is shown—better
than the Al,03/GOI and Al,O3/Si MOSFETs.

Such a drive current improvement is due to the
higher electron mobility, as shown in Fig. 7. The
mobility of the Al,O3/InGaAs transistor, with an
improved interface, was 451 cm?/V's, which is 1.3
times higher than for an Al,05/GOI MOSFET, and
2.5 times higher than that for the Al,O3/Si device.
However, this mobility in Al,O3/InGaAs MOSFET
is still ~18 times lower than that of the HEMT,
indicating that the soft-phonon and interface
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Fig. 5. Schematic diagram of III-V oxide on InGaAs. Unlike
Si0,/Si, more dangling bonds may be formed with the weak
InGaO; and As,O3 oxide on the InGaAs.
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Fig. 6. I4 V4 characteristics of Al/Al,O;/InGaAs UTB MOS-
FETs on insulating InAlAs/InP, with an in situ covered Al,O3 on
the InGaAs.
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Fig. 7. Electron mobility of an AlO;3;/InGaAs MOSFET
compared with Si and GOI devices.
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scattering are still limiting factors for the Al,O;/
InGaAs MOSFETs, even through the interface was
covered by in situ deposited Al and converted into
Al,O3.

4. Conclusions

We have fabricated defect-free InAlAs/InGaAs/
InAlAs-OI on Si, and high drive current CSOI
HEMTs with a high 8100cm?/Vs mobility. The
Al,O5;/InGaAs MOSFET with an in situ interface
treatment gave 1.3 or 2.5 times higher mobility than
that of Al,03/GOI or Al,O3/Si MOSFETs, respec-
tively, but an inferior mobility compared with the
HEMT structure. This suggests that the soft-
phonon and interface scattering are the mechanisms
limiting the performance.
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