一、發明名稱：(中文/英文)
助鎳劑

二、申請人：(共 1 人)
姓名或名稱：(中文/英文)
國立交通大學
代表人：(中文/英文)(簽章) 張 俊 彥
住居所或營業所地址：(中文/英文)
新竹市大學路 1001 號
國 籍：(中文/英文) 中華民國

三、發明人：(共 8 人)
姓名：(中文/英文)
1. 徐 享 文 / Sheang-Wen Shyu
2. 黃 和 悅 / Her-Yueh Huang
3. 曾 光 宏 / Kuang-Hung Tseng
4. 林 仁 治 / Jen-Chin Lin
5. 張 肇 芳 / Jaw-Fang Chang
6. 蔡 封 瀚 / Feng-Hao Tsai
7. 楊 宗 杰 / Tsung-Chieh Yang
8. 周 長 彬 / Chang-Pin Chou

國 籍：(中文/英文)
1. 中華民國 2. 中華民國 3. 中華民國 4. 中華民國
5. 中華民國 6. 中華民國 7. 中華民國 8. 中華民國

四、聲明事項：(略)
發明專利說明書

※申請案號：P3137000
※申請日期：103-12-21
※IPC分類：B23K35/362

一、發明名稱：（中文/英文）
助錳劑

二、申請人：（共1人）
姓名或名稱：（中文/英文）
國立交通大學

代表人：（中文/英文）（簽章）張俊彥

住居所或營業所地址：（中文/英文）
新竹市大學路1001號

國籍：（中文/英文）中華民國

三、發明人：（共8人）
姓名：（中文/英文）
1. 徐享文/Sheang-Wen Shyu
2. 黃和悅/Her-Yueh Huang
3. 曾光宏/Kuang-Hung Tseng
4. 林仁治/Jen-Chin Lin
5. 張肇芳/Jaw-Fang Chang
6. 蔡封灝/Feng-Hao Tsai
7. 楊宗杰/Tsung-Chieh Yang
8. 周長彬/Chang-Pin Chou

國籍：（中文/英文）
1. 中華民國 2. 中華民國 3. 中華民國 4. 中華民國
5. 中華民國 6. 中華民國 7. 中華民國 8. 中華民國

四、聲明事項：（略）
五、中文發明摘要：

助銲劑

一種助銲劑，包含有一基質以及一活化添加物：基質係為氧化鉍，而活化添加物係選自氧化鐵、氧化砂，以及碳酸鎂所組成之群組；藉此，本發明可應用於碳鋼材料之5 銲接加工，提高銲接過程的銲道熔接深度，達到節省加工
時間，減少整體製造成本之目的。

六、英文發明摘要：無

七、指定代表圖：無

八、本案若有化學式時，請揭示最能顯示發明特徵的化學式：

無
五、中文發明摘要：

助錳劑

一種助錳劑，包含有一基質以及一活化添加物：基質係為氧化銨，而活化添加物係選自氧化鐵、氧化矽，以及碳酸鎂所組成之群組；藉此，本發明可應用於碳鋼材料之

六、英文發明摘要：無

七、指定代表圖：無

八、本案若有化學式時，請揭示最能顯示發明特徵的化學式：

無
九、發明說明：

【發明所屬之技術領域】

本發明係與助焊劑有關，特別是關於一種鍍接碳鋼材料之助焊劑。

【先前技術】

一般用於電弧鍍加工之助焊劑，除了具有促進熔融金屬於鍍接過程之流動性，與防止鍍材氧化等特點以外，還可增加金屬材料構件之鍍道熔透深度，使厚度較厚之金屬構件亦可順利地進行鍍接加工；而可增加鍍道熔透深度之助焊劑最初係由烏克蘭巴頓鍍接研究所（Paton Welding Institute, PWI）於 60 年代發表，可將不鏽鋼材料之熔透深度提昇至 5mm 以上，但因為該助焊劑含有氯化物而未被廣泛使用，直到 1996 年愛迪生鍍接研究所（Edison Welding Institute, EWI）提出利用氧化鈦（TiO₂）、氧化鉻（Cr₂O₃），以及氧化矽（SiO₂）所組成之助焊劑，配合揮發性液體調合之後，再塗佈於不鏽鋼材質之構件表面，亦可將鍍接加工之熔透深度提昇至 5mm 以上。

然而，上述可增加鍍道熔透深度之助焊劑僅能應用於不鏽鋼材料，目前仍然有助焊劑係針對碳鋼材料之鍍接加工，當要利用電弧鍍加工鍍接碳鋼材料之構件時，由於鍍過程中之熔池所佔的區域會呈現較淺且寬的現象，使構件厚度必須控制在 3mm 以下，才能順利完成鍍接；如果要鍍接厚度大於 3mm 之碳鋼材質構件時，則必須預先於構件之鍍接部位設一定面呈 V 形之鍍接槽，然後在鍍接槽內施
行多次熔鍊過程，藉以提高鍊道熔接深度，才能完成碳鋼材料之鍊接作業，相當浪費加工時間，而且增加製造成本。

【發明內容】

因此，本發明之主要目的乃在提供一種應用於鍊接碳鋼材料之助鍊劑，可提高鍊接過程之鍊道熔接深度，進而節省加工時間，減少整體製造成本。

為達成前揭目的，本發明之助鍊劑包含有一基質以及一活化添加物：該基質係為氧化鎘，而該活化添加物係選自氧化鈷、氧化砂，以及碳酸鎘所組成之群組；藉此，本發明可應用於碳鋼材料之鍊接加工，提高鍊接過程的鍊道熔接深度，達到節省加工時間，減少整體製造成本之目的。

【實施方式】

以下兹列舉若干較佳實施例，以說明本發明之技術特點及功效。

本發明第一較佳實施例所提供之助鍊劑，包含有一基質以及一活化添加物，該基質係為粒度500之氧化鎘(MoO₃)粉末，該活化添加物則為粒度500之氧化鈷(Fe₂O₃)粉末，其中，基質佔助鍊劑總重量比之60%，而活化添加物佔助鍊劑總重量比之40%；基質與活化添加物係由預定量具揮發性之液體介質(例如丙酮(Acetone))相互混合，使助鍊劑呈糊狀。

經由上述之助鍊劑，當要進行厚度為5mm之1020低碳
鋼對接(butt joint)構件的電弧鍍加工時，係先利用扁平毛刷
將前述呈糊漿狀之助鍍劑均勻塗敷於該碳鋼構件之表面將
有鍍接電極行經的待電弧熔接區域，助鍍劑塗敷之總寬度
約 10mm，而厚度以能遮蓋該碳鋼構件表面之金屬光澤即
可，於液體介質完全揮發後即可以 200A 之鍍接電流配合
150mm/min 鍍接速度，對該碳鋼構件進行惰氣鎢極電弧鍍
(Gas Tungsten Arc Welding, GTAW)加工。

在電弧鍍加工後，可發現鍍接之鍍道表面附近幾乎沒
有飛濺物之產生，並且該鍍道表面幾乎與附近未熔之表面
齊平，進而得到較平整之外觀；取該鍍道之截斷面 (以垂直
於該碳鋼構件鍍接方向) 檢視，該鍍道於該碳鋼構件呈現出窄
且完全熔透之現象。

藉此，本創作即可提高鍍接過程之鍍道熔接深度，不
需於厚度較厚之碳鋼構件增設 V 形槽，達到節省加工時
間，減少整體製造成本的目的。

本發明第二較佳實施例所提供之助鍍劑，亦包含有一
基質以及一活化添加物，基質係為粒度 #325 之氧化鋯粉
末，活化添加物則為粒度 #325 之氧化矽(SiO₂)粉末，基質與
活化添加物係以乙醇 (Alcohol) 為液體介質相互混合而呈
糊漿狀，其中氧化鋯佔助鍍劑總重量比之 40%，而氧化矽
助鍍劑總重量比之 60%；在利用助鍍劑進行厚度 5mm 之
1040 中碳鋼對接構件的電弧鍍加工時，亦係利用扁平毛刷
將助鍍劑均勻塗敷於碳鋼構件表面，以 200A 之電流、
150mm/min 之鍍接速度進行鍍接加工，在鍍接之鍍道表面
附近亦幾乎沒有飛濺物之產生，取該錶道之截斷面(以垂直該碳鋼構件錶接方向)檢視，該錶道於碳鋼構件呈現出熔透並完全接合之現象。

本發明第三較佳實施例所提供之助錶劑，同樣包含有一基質以及一活化添加物，基質為粒度#325之氧化鋁粉末，而特點則在於活化添加物係為粒度#325之碳酸鎂(MgCO₃)粉末。

另外，於上述之第一實施例中，當活化添加物為氧化鐵時，其錶道與附近未熔表面之齊平效果最好；再者，氧化鋁搭配氧化鐵在助錶劑中所佔之重量比介於50%至70%之間較佳，而特別以佔重量比60%為最佳；氧化鋁搭配氧化砳在助錶劑中所佔之重量比介於30%至50%之間較佳，而特別以佔重量比40%為最佳；氧化鋁搭配碳酸鎂在助錶劑中所佔之重量比介於70%至90%之間較佳，而特別以佔重量比80%為最佳。

必須特別說明的是，基質與活化添加物之粒度倘若大於#325，會導致助錶剝對碳鋼附著效果不佳；液體介質除了丙酮之外，亦可以甲醇(Methanol)等揮發性液體代用；助錶剝亦可利用一發泡剝混合而呈液態泡沫狀後，再塗佈於碳鋼構件，或是藉由靜電匯聚之方式佈設於碳鋼構件，又或是將基質與活化添加物混合後塗佈於一膜狀基材之表面，再將該膜狀基材黏附於碳鋼構件，同樣皆可達到本發明之目的。
十、申請專利範圍：

1.一種助鍍劑，包含有：
 一基質，該基質係為氧化鋇；以及
 一活化添加物，該活化添加物係選自氧化鐵、氧化矽，
 以及碳酸鎂所組成之群組。

2.依據申請專利範圍第1項所述之助鍍劑，其中該基質
 之重量比係為 30%以上，該活化添加物之重量比為 70%以
 下。

3.依據申請專利範圍第1項所述之助鍍劑，當該活化添
 加物係為氧化鐵時，該基質佔該助鍍劑總重量比之
 50~70%。

4.依據申請專利範圍第1項所述之助鍍劑，當該活化添
 加物係為氧化矽時，該基質佔該助鍍劑總重量比之
 30%~50%。

5.依據申請專利範圍第1項所述之助鍍劑，當該活化添
 加物係為碳酸鎂時，該基質佔該助鍍劑總重量比之
 70%~90%。

6.依據申請專利範圍第3項所述之助鍍劑，當該活化添
 加物係為氧化鐵時，該基質佔該助鍍劑總重量比之 60%。

7.依據申請專利範圍第4項所述之助鍍劑，當該活化添
 加物係為氧化矽時，該基質佔該助鍍劑總重量比之 40%。

8.依據申請專利範圍第5項所述之助鍍劑，當該活化添
 加物係為碳酸鎂時，該基質佔該助鍍劑總重量比之 80%。

9.依據申請專利範圍第1項所述之助鍍劑，其粒度至少
 為#325。
10. 依據申請專利範圍第1項所述之助焊劑，其中該基質之重量比係為30%以上，該活化添加物之重量比為70%以下，而該基質與該活化添加物之粒度分別至少為#325。

11. 一種助焊劑之用法，係應用申請專利範圍第1項所述之助焊劑，藉由一液體介質使該助焊劑呈糊漿狀後，再塗敷於一碳鋼構件待電弧熔錫之熔接區。

12. 依據申請專利範圍第11項所述助焊劑之用法，該液體介質係為丙酮。

13. 依據申請專利範圍第11項所述助焊劑之用法，該液體介質係為甲醇。

14. 依據申請專利範圍第11項所述助焊劑之用法，該液體介質係為乙醇。

15. 一種助焊劑之用法，係應用申請專利範圍第1項所述之助焊劑，藉一發泡劑使該助焊劑呈液態泡沫狀後，再塗敷於一碳鋼構件待電弧熔錫之熔接區。

16. 一種助焊劑之用法，係應用申請專利範圍第1項所述之助焊劑，藉由靜電匯聚之方式佈設於一碳鋼構件待電弧熔錫之熔接區。

17. 一種助焊劑之用法，係應用申請專利範圍第1項所述之助焊劑，塗佈於一膜狀基材之表面後，將該膜狀基材黏附於一碳鋼構件待電弧熔錫之熔接區。