發明專利說明書

一、發明名稱：(中文/英文)

可調光訊號延遲模組及方法

二、申請人：(共1人)

姓名或名稱：(中文/英文)
國立交通大學

代表人：(中文/英文) 吳妍華
住居所或營業所地址：(中文/英文)
新竹市大學路1001 號

國 籍：(中文/英文) 中華民國 TW

三、發明人：(共7人)

姓名：(中文/英文)
1. 陳智弘
2. 高偉哲
3. 彭朋群
4. 林俊廷
5. 吳芳銘
6. 施伯宗
7. 祁姓

國 籍：(中文/英文)
中華民國 TW (皆同)
四、聲明事項：

☑ 主張專利法第二十二條第二項☑第一款或☑第二款規定之事實，其事實發生日期為：97年6月20日。容後補呈

☐ 申請前已向下列國家（地區）申請專利：

【格式請依：受理國家（地區）、申請日、申請案號 順序註記】

☐ 有主張專利法第二十七條第一項國際優先權：

☐ 無主張專利法第二十七條第一項國際優先權：

☐ 主張專利法第二十九條第一項國內優先權：

【格式請依：申請日、申請案號 順序註記】

☐ 主張專利法第三十条生物材料：

☐ 須寄存生物材料者：

國內生物材料【格式請依：寄存機構、日期、號碼 順序註記】

國外生物材料【格式請依：寄存國家、機構、日期、號碼 順序註記】

☐ 不須寄存生物材料者：

所屬技術領域中具有通常知識者易於獲得時，不須寄存。
五、中文發明摘要：

本發明係關於一種可調光訊號延遲模組及方法，特別是一種將光放大器自行產生的自發性輻射激發逆向迴授回光放大器，且透過調整自發性輻射激發於迴授系統之光功率而取代傳統上同調居量振盪效應（coherent population oscillations）所需之幫浦雷射，並且藉此效應來改變光放大器之群折射率，進而達到延遲原輸入光訊號時序之目的。此外迴授光路所使用之光元件包含光衰減器、光濾波器以及光迴旋器等元件，讓使用者能透過調整迴授光路之光功率就能達到控制光訊號延遲時序之目的。本發明不但降低光訊號延遲模組之成本，同時系統體積亦可減少。

六、英文發明摘要：

...
七、指定代表圖：

(一)本案指定代表圖為：第(2)圖。

(二)本代表圖之元件符號簡單說明：

2 前置三埠光迴旋器

4 光放大器

6 後置三埠光迴旋器

8 光濾波器

10 光衰減器

八、本案若有化學式時，請揭示最能顯示發明特徵的化學式：
九、發明說明：

【發明所屬之技術領域】

本發明是關於一種光訊號延遲模組及方法，特別是一種將光放大器自動產生的自發性輻射激發逆向傳授回光放大器來改變光放大器之群折射率，進而達到延遲器輸入光訊號時序的模組及方法。

【先前技術】

光纖通訊（Fiber-optic communication）是一種利用光與光纖（optical fiber）傳遞資訊的通訊方式，通過調變（modulation）後便能攜帶資訊。自1980年代起，光纖通訊系統在數位時代的許多角色，因為光纖通訊具有傳輸容量大，保密性好等許多優點。而光纖通訊主要原理是將所需傳送之信息在發送端輸入到發送機中，再將信息複合或調製到作為信號載體的載波上，然後將已調製的載波通過傳輸媒質傳送到遠處的接收端，由接收機解調出原來的信息。

此外利用一線光纖可以透過調整不同波長同時傳遞好幾組訊號如電話、網際網路，或是有線電視的訊號。與傳統的鋼線相比，光纖的訊號衰減與遭受干擾的性能亦改善很多，特別是長距離以及大量傳輸的使用場合中，光纖的優勢更為明顯。然而，當不同波長的光訊號被耦合均勻混入入射端後，因為每一條路徑的訊號時序並不一樣，因此不同波長的光訊號在波導內傳播時會造成不同的相位延遲，換言之，接收端可能會接收到超過自身一次能負載的資料量。所以光纖網路需要使用不同的延遲技術將光訊號延遲以確保接收端能承受龐大的資料流量，避免資料流失。而現有光訊號延遲技術多為控制光訊號的路徑，藉調整光訊號路徑，達到光訊號延遲

為了解決上述之問題，本發明提出一種光訊號延遲模組，利用光放大器自行產生的自發性輻射激發（Amplified Spontaneous Emission），將之迴授回光放大器，並且藉由控制迴授光路自發性輻射激發光功率而達到可調延遲時序光訊號，取代以往需要額外的幫浦雷射達到同調居量振盪效應，造成群折射率改變或改變光訊號傳輸路徑長短以達成光訊號延遲，大幅節省光纖網路之成本。

【發明內容】

本發明之主要目的係在提供一種可調光訊號延遲模組及方法，其係是一種利用光放大器的自發性輻射激發經過本系統而達成同調居量震盪效應行為，造成光放大器之群折射率改變來延遲光訊號，進而取代原本需要額外幫浦雷射來達到同調居量震盪效應或藉由傳輸光路徑來控制延遲光訊號效果，大幅減少光纖網路製造成本。

本發明之延遲模組主要是由光放大器以及光迴授光路所組成。光放大
器除了將所接收之光訊號放大並產生一自發性輻射激發，而光迴授光路係連接光放大器之兩端出口，負責接收自發性輻射激發並迴授回光放大器，並藉由控制迴授光路之光功率大小，以改變光放大器之群折射率，進而達到控制延遲所入射光放大器之光訊號時序。其中光迴授光路可進一步由兩個三埠光迴旋器（一前置與一後置）、光濾波器以及光衰減器所組成。前置三埠光迴旋器，其第一埠接收光訊號，並由其第二埠輸出給光放大器，而其第二埠同時亦接收從光放大器所產生之自發性輻射激發並從其第三埠輸出；後置三埠光迴旋器，其第二埠接收放大後之光訊號，並由其第三埠輸出；光濾波器，接收由前置三埠光迴旋器第三埠所輸出之自發性輻射激發，並濾除不需要的光波；光衰減器，調整自發性輻射激發功率，並將調整與過濾後的自發性輻射激發傳送給後置三埠光迴旋器第一埠，由後置三埠光迴旋器第二埠輸出迴授到光放大器以改變光放大器之群折射率，進而實現可調光訊號延遲模組。

底下藉由具體實施例配合所附的圖式詳加說明，當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。

【實施方式】

本發明揭露了一種可調光訊號延遲模組及方法，特別是一種利用光放大器自行產生的自發性輻射激發，讓使用者只需調整自發性輻射激發迴授光功率大小即可有效控制光訊號延遲之模組，進而減少可調光訊號延遲模組之製造成本。

1917 年愛因斯坦提出物質與輻射的作用有三個基本的過程，即激發吸
收，自發放射和激發放射三種。激發吸收即一般的收過程，當輻射光含有 \(h \mu = E_2 - E_1 \) 之光子入射於低能階（基態）為 \(E_1 \)，而其任一高能階能量為 \(E_2 \) 物質時，\(h \mu \) 的光子能量將使該原子自 \(E_1 \) 躍遷至 \(E_2 \)。當原子自基能躍遷至激發態後，有兩個過程使它重返至基態，其一為自發放射，即不須外界的干擾，過一段時間後，它自行自 \(E_2 \) 之能階降至 \(E_1 \) 之能階，並釋放出 \(h \mu \) 的光子能量，此自發放射的方向、相位等是任意的。另一過程為激發放射即處於激發態之原子，由於受到外來光子之撞擊，而由高能階向低能階躍遷。此時，所產生的光子與外來的光子有相同特性，即它們的頻率、相位、偏極方向和傳播方向均為一致。換言之，自發性放射（spontaneous emission）是種處於激發態電子能階的物質，因自發性發射作用而失去全部或部份多餘能量，同時它亦是一種隨機過程，所以在不同的激發態分子中，出現放射現象的瞬間與所產生的光子行徑也會有差異，並進一步產生非同調性（incoherent）單光輻射線。

本發明之可調光訊號延遲模組及方法，主要係利用光放大器的自發性輻射激發（amplified spontaneous emission），所於系統中所引起之同調居量震盪效應（CPO），達成可調光訊號延遲模組。其過程係將一光放大器之兩端以一光迴授光路連接，再將光放大器所產生之自發性輻射激發以逆時鐘方向由光迴授光路迴授回光放大器，接下來使用者就可藉由調整該自發性輻射激發之功率來改變光放大器之群折射率，進而達到藉由控制迴授光功率大小，實現可調延遲光訊號之效果。

第 2 圖為本發明之延遲模組架構示意圖，主要包含一光放大器 4 以及
一光迴授光路，其中光訊號行走路徑以實線來表示，而迴授光路訊號路徑則以虛線來表示。光放大器 4 除了將所接收之光訊號放大外，主要是能產生一自發性輻射激發並由迴授路徑輸出，而光迴授光路係連接光放大器 4 之兩端，負責接收自發性輻射激發並迴授到光放大器 4 以改變光放大器之群折射率，進而實現可調延遲時序光訊號之延遲模組。在本發明之較佳實施例之一中，光迴授光路是由兩個三埠光迴旋器(一前置三埠光迴旋器 2 及一後置三埠光迴旋器 6)、一光濾波器 8 以及一光衰減器 10 所組成。三埠光迴旋器(Optical Circulator)如名係為一個三埠的架構，光訊號傳導路徑在第一埠輸入將在第二埠輸出，在第二埠輸入將在第三埠輸出，形成單向迴旋性的傳遞作用，因此三埠光迴旋器亦可由多埠光迴旋器或額外光訊號路徑來取代。本發明光迴授光路中的前置三埠光迴旋器 2，其第一埠接收光訊號，並由其第二埠輸出給光放大器 4；後置三埠光迴旋器，其第二埠接收放大後之光訊號，並由其第三埠輸出。光濾波器 8，由前置三埠光迴旋器 2 第三埠輸出自發性輻射激發到光濾波器 8 並過濾不需要的光波。最後是光衰減器 10，主要係用來調整自發性輻射激發之功率，由於不同的自發性輻射激發之功率對光放大器群折射率的改變有不同的影響，而群折射率又是影響光訊號時序之關鍵，因此藉由調整自發性輻射激發之功率可以調整光訊號之延遲時序，讓本發明之光訊號延遲模組成為可調性模組。光衰減器 10 在調整完自發性輻射激發之功率後會將調整與過濾後的自發性輻射激發信送給後置三埠光迴旋器 6 第一埠，由後置三埠光迴旋器 6 第二埠輸出回光放大器，並藉由改變光放大器之群折射率來延遲輸入光訊號之時序，進而
實現可調光訊號延遲模組。

換言之，由於光放大器會產生自發性輻射激發，因此本發明利用光迴旋器、光濾波器與光衰減器所組成的光迴授系統，取代同調居量振盪（coherent population oscillations）機制所需之一外部光幫浦訊號（pump signal），因此可由控制光衰減器 10 之衰減功率間接達到控制光訊號延遲的效果。第 3 圖為本發明之實驗設定示意圖，用以證明本發明之功效。其中可調雷射光(Tunable Laser)輸出後經過電光調變器（Electro-Optic Modulator, EOM)將雷射光調變為弦波訊號，光訊號輸入前置三埠光迴旋器 2 第一埠的強度後，通過第二埠輸入半導體光放大器 4，再輸入到後置三埠光迴旋器 6 第二埠的位置後，通過第三埠將光訊號輸出，另外光放大器 4 產生之自發性輻射激發由光迴授系統，再迴授輸入到光放大器 4。本發明調整光衰減器 10，比較當光迴授系統輸入光放大器 4 之光功率為 -20 dBm (decibel 毫瓦 mW) 與 8 dBm 時之光訊號延遲變化，第 4 圖為示波器所取得之波形圖，可以清楚發現當輸入光放大器 4 之光功率不同時，可以達到光訊號延遲的效果。第 5 圖則是本發明與先前技術(第 1 圖)利用外部幫浦雷射之時間延遲與光迴授系統功率之關係圖，本發明使用 1 GHz 的探測訊號進入半導體光放大器，比較在光迴授系統與外部幫浦雷射下之光訊號延遲變化，均可達成光時序調整的效果，不但驗證本發明之光訊號延遲可行性，同時也代表本發明能在不使用額外幫浦雷射或光路徑來達成光訊號延遲，進而降低光訊號延遲模組之製造成本及拓撲空間。

惟以上所述者，僅為本發明之較佳實施例而已，並非用來限定本發明
實施之範圍。故即凡依本發明申請範圍所述之形狀、構造、特徵及精神所為之均等變化或修飾，均應包括於本發明之申請專利範圍內。

【圖式簡單說明】
第 1 圖為先前技術之架構示意圖。
第 2 圖為本發明之模組示意圖。
第 3 圖為本發明之模組實驗示意圖。
第 4 圖為本發明之實驗結果示意圖。
第 5 圖為本發明與先前技術功率比較之關係示意圖。

【主要元件符號說明】
2 前置三埠光迴旋器
4 光放大器
6 後置三埠光迴旋器
8 光濾波器
10 光衰減器
十、申請專利範圍:

1. 一種可調光訊號延遲模組，包含:
 一光放大器，接收一輸入光訊號並將之放大，同時產生一自發性輻射激發；以及
 一光迴授光路，連接該光放大器之兩端，該光迴授光路包括:
 一光濾波器，接收該光放大器產生之該自發性輪射激發，並濾除不需要的光波；以及
 一光衰減器，接收該光濾波器濾除後的該自發性輪射激發，該光衰減器並調整該自發性輪射激發之功率，並將調整與過濾後的該自發性輪射激發回傳給該光放大器，以改變該光放大器之群折射率，進而延遲該光訊號。

2. 如申請專利範圍第1項所述之可調光訊號延遲模組，其中該光迴授光路更包括:
 一前置三埠光迴旋器，該前置三埠光迴旋器第一埠接收該輸入光訊號，
 並由該前置三埠光迴旋器第二埠輸出給該光放大器，而該前置三埠光迴旋器第二埠同時亦接收從該光放大器所產生之自發性輪射激發並從該前置三埠光迴旋器第三埠輸出至該光濾波器；以及
 一後置三埠光迴旋器，該後置三埠光迴旋器第二埠接收放大後之該輸入光訊號，並由該後置三埠光迴旋器第三埠輸出，而該後置三埠光迴旋器第一埠接收調整與過濾後的該自發性輪射激發，由該後置三埠光迴旋器第二埠輸出迴授於該光放大器。
3. 如申請專利範圍第2項所述之可調光訊號延遲模組，其中該二埠光迴旋器亦可由多埠光旋器或額外光訊號路徑來取代。

4. 如申請專利範圍第1項所述之可調光訊號延遲模組，其中該光迴授光路可視為一同調居量振盪機制所需之光幫浦。

5. 一種可調光訊號延遲方法，包含：

將一光放大器之兩端以一光迴授光路連接；

將該光放大器所產生之自發性輻射激發以逆向方式由該光迴授光路迴授到該光放大器；以及

藉由該光迴授光路內之一光衰減器，調整該自發性輻射激發之功率以改變光放大器之群折射率，進而延遲輸入光訊號之時序。

6. 如申請專利範圍第5項所述之可調光訊號延遲方法，其中該光迴授光路可視為一同調居量振盪機制所需之光幫浦。
十一、圖式：

第1圖 (光學技術)

光放大器

光

訊號

氮掃描

2 3 C
第4圖
● 使用光迴授電路
△ 使用幫浦雷射

第5圖